Future studies with high-precision on fundamental interactions developed on lepton colliders require high-intensity and low-emittance positron sources. Such sources are needed for e+e- and also μ+μ- (generated with positrons) facilities. The availability of powerful positron sources is, therefore, very important. In this context, positron sources providing higher yields, better emittance and...
We go beyond the state-of-the-art by combining first principle lattice results and effective field theory approach as Polyakov Loop model to explore the non-perturbative dark deconfinement-confinement phase transition and the generation of gravitational-waves in a pure gluon dark Yang-Mills theory. We further include fermions with different representations in the dark sector. Employing the...
With proton-proton collisions about to restart at the Large Hadron Collider (LHC) the ATLAS detector will double the integrated luminosity the LHC accumulated in the ten previous years of operation. After this data-taking period the LHC will undergo an ambitious upgrade program to be able to deliver an instantaneous luminosity of $7.5\times 10^{34}$ cm$^{-2}$ s$^{-1}$ allowing to collect more...
The HERAPDF2.0 ensemble of parton distribution functions (PDFs) was introduced in 2015. The final stage is presented, a next-to-next-to-leading-order (NNLO) analysis of the HERA data on inclusive deep inelastic $ep$ scattering together with jet data as published by the H1 and ZEUS collaborations. A perturbative QCD fit, simultaneously of $\alpha_s(M_Z^2)$ and the PDFs, was performed with the...
ALICE is the experiment at the LHC specifically designed to study the properties of the quark-gluon plasma (QGP), a deconfined state of matter created in ultrarelativistic heavy-ion collisions. In this context, light-flavour particle production measurements play a key role, as they can probe statistical hadronization and partonic collectivity. Recent measurements in small collision systems (pp...
Very detailed measurements of Higgs boson properties and its interactions can be performed with the full Run 2 pp collision dataset collected at 13 TeV by using its decays into bosons, shining light over the electroweak symmetry breaking mechanism. This talk presents the latest measurements of the Higgs boson coupling properties by the ATLAS experiment in various bosonic decay channels, e....
Physics in (canonical) quantum gravity needs to be manifestly diffeomorphism-invariant. Consequently, physical observables need to be formulated in terms of manifestly diffeomorphism-invariant operators, which are necessarily composite. This makes an evaluation in general involved, even if the concrete implementation of quantum gravity should be treatable (semi-)perturbatively in general.
A...
One of the main goals of the STAR experiment is to map the QCD phase diagram. The flow harmonics of azimuthal anisotropy ($v_{2}$ and $v_{3}$) of particles are sensitive to the initial dynamics of the medium. The first phase of RHIC Beam Energy Scan Phase-I (BES-I) program demands a precision measurement of $v_{2}$ and $v_{3}$ specifically for $\phi$ mesons and multi-strange hadrons in the low...
Fermilab is considering several concepts for a future 2.4~MW upgrade for DUNE/LBNF, featuring linac extensions of the PIP-II linac and the construction of a new rapid-cycling-synchrotron and/or accumulation rings. This talk will summarize the relationship between these scenarios, emphasizing the commonalities and tracing the differences to their original design questions. In addition to a...
According to the current experimental data, the SM Higgs vacuum appears to be metastable due to the development of a second, lower ground state in the Higgs potential. Consequently, vacuum decay would induce the nucleation of true vacuum bubbles with catastrophic consequences for our false vacuum Universe. Since such an event would render our Universe incompatible with measurements, we are...
In recent times, several hints of lepton flavour universality violation have been observed in semileptonic B decays, which point towards the existence of New Physics beyond the Standard Model. In this context, we consider a new variant of $U(1)_{L_{\mu}-L_{\tau}}$ gauge extension of Standard Model, containing three additional neutral fermions $N_{e}, N_{\mu}, N_{\tau}$, along with a...
Thanks to the statistics of pp collision collected by the ATLAS experiment a 13 TeV a the LHC Run 2, detailed measurements of Higgs boson properties and its interactions can be performed using its decays into fermions, shining light over the properties of the Yukawa interactions. This talk presents the latest measurements of the Higgs boson properties by the ATLAS experiment in various...
We discuss recent developments related to the the latest release of the NNPDF family of global analyses of parton distribution functions: NNPDF4.0. This PDF set expands the NNPDF3.1 determination with 44 new datasets, mostly from the LHC. We derive a novel methodology through hyperparameter optimisation, leading to an efficient fitting algorithm built upon stochastic gradient descent....
Neutrino oscillation physics has now entered the precision era. In parallel with needing larger detectors to collect more data with, future experiments further require a significant reduction of systematic uncertainties with respect to what is currently available. In the neutrino oscillation measurements from the T2K experiment the systematic uncertainties related to neutrino interaction cross...
The stability of particles in the cosmic soup is an important property as it governs their evolution in the cosmos, both on the perturbation and on the background level. In this work, we update the constraints on the decay rate of decaying cold dark matter (DCDM), particularly in the case when decay products are dark and massless or well within the relativistic limit. We further assume, as a...
The latest studies of beauty meson decays to open charm final states from LHCb are presented. Several first observations and branching fraction measurements using Run 1 and Run 2 data samples are shown. These decay modes will provide important spectroscopy information and inputs to other analyses.
The increase of the particle flux at the HL-LHC with instantaneous luminosities up to L ≃ 7.5 × 10^34 cm^−2s^−1 will have a severe impact on the ATLAS detector performance. The forward region where the liquid Argon calorimeter has coarser granularity and the inner tracker has poorer momentum resolution will be particularly affected. A High Granularity Timing Detector (HGTD) will be installed...
The Muon g-2 Experiment at Fermilab has recently measured the muon magnetic anomaly with 460 parts per billion precision. This result is consistent with the measurement from the previous BNL experiment, and the combined Fermilab-BNL value deviates from the most recent Standard Model calculation provided by the Muon g-2 Theory Initiative at the level of 4.2 standard deviations. The muon anomaly...
I will briefly discuss the signatures and discovery prospects of several new physics models containing dark matter candidates at future lepton colliders. In particular, I will discuss the IDM as well as THDMa. Based on https://arxiv.org/abs/2203.07913
The all-order structure of scattering amplitudes is greatly simplified by the use of (generalized) Wilson line operators, describing (subleading) soft emissions from straight lines extending to infinity. In this talk I will review how these techniques (originally developed for QCD phenomenology) can be naturally applied to gravitational scattering. At the quantum level, we find a convenient...
We present fits to determine parton distribution functions (PDFs) using a diverse set of measurements from the ATLAS experiment at the LHC, including inclusive W and Z boson production, ttbar production, W+jets and Z+jets production, inclusive jet production and direct photon production. These ATLAS measurements are used in combination with deep-inelastic scattering data from HERA. Particular...
This talk will cover measurements of Higgs boson differential cross section measurements with fermionic decay channels and in ttH production, including fiducial differential cross-sections and STXS results.
NOvA is a long-baseline neutrino oscillation experiment with a beam and near detector at Fermilab and a far detector 810 km away in northern Minnesota. It features two functionally identical scintillator detectors. By measuring muon neutrino disappearance and electron neutrino appearance as a function of energy in both neutrinos and antineutrinos, NOvA can measure the parameters of the PMNS...
In this talk, I will present a short overview of the connection between particle physics and phase transitions in the early and very early universe. I will then focus on phase transitions during inflation and present recent results on how to use the stochastic spectral expansion to perform phenomenology calculations. I will also talk about the interplay between the electroweak phase...
The tree-level determination of the CKM angle gamma is a standard candle measurement of CP violation in the Standard Model. The latest LHCb results from measurements of CP violation using beauty to open charm decays are presented. These include measurements using the full LHCb Run 1+2 data sample and the latest LHCb gamma & charm mixing combination.
Strange and multi-strange hadrons have a small hadronic cross-section compared to light hadrons, making them an excellent probe for understanding the initial stages of relativistic heavy-ion collisions and dynamics of QCD matter. Isobar collisions, $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr, at $\sqrt{s_{\mathrm {NN}}}$ = 200 GeV have been performed at RHIC. These...
The Upgrade II of the LHCb experiment is proposed for the long shutdown 4 of the LHC. The upgraded detector will operate at a maximum luminosity of $1.5x10^{34}$cm$^{-2}$s$^{-1}$, with the aim of integrating ~300 fb$^{-1}$ through the lifetime of the high-luminosity LHC (HL-LHC). The collected data will allow to fully exploit the flavour-physics opportunities of the HL-LHC, probing a wide...
Bubble nucleation is a key ingredient in a cosmological first order phase transition. The non-equilibrium bubble dynamics and the properties of the transition are controlled by the density perturbations in the hot plasma. We present, for the first time, the full solution of the linearized Boltzmann equation. Our approach, differently from the traditional one based on the fluid approximation,...
This talk will cover measurements of Higgs boson differential cross section measurements with boson decay channels, including fiducial differential cross-sections and STXS results.
The Inert Doublet Model (IDM) is a simple extension of the Standard Model, introducing an additional Higgs doublet that brings in four new scalar particles. The lightest of the IDM scalars is stable and is a good candidate for a dark matter particle. The potential of discovering the IDM scalars in the experiment at the Compact Linear Collider (CLIC), an e$^+$e$^-$ collider proposed as the next...
The radion equilibrium in the Randall-Sundrum model is guaranteed by the backreaction of a bulk scalar field. We studied the radion dynamics in an extended scenario, where an intermediate brane exists in-between the UV and IR branes. We conducted an analysis in terms of the Einstein’s equations and effective Lagrangian after applying the Goldberger-Wise mechanism. Our result elucidates that in...
Recently the Muon g-2 collaboration published the most precise measurement of the anomalous magnetic moment of the muon, $a_\mu$, with a 460 ppb uncertainty based on the Run 1 data. The measurement principle is based on a clock comparison between the anomalous spin precession frequency of spin-polarized muons and a high-precision measurement of the magnetic field environment using nuclear...
Relativistic protons and electrons in the extremely powerful jets of blazars may boost via elastic collisions the dark matter particles in the surroundings of the source to high energies. The blazar-boosted dark matter flux at Earth may be sizeable, larger than the flux associated with the analogous process of DM boosted by galactic cosmic rays, and relevant to access direct detection for dark...
One of the key challenges of hadron physics today is understanding the origin of strangeness enhancement in high-energy hadronic collisions, i.e. the increase of (multi)strange hadron yields relative to non-strange hadron yields with increasing charged-particle multiplicity. In particular, what remains unclear is the relative contribution to this phenomenon from hard and soft QCD processes and...
The investigation of $B$-meson decays to charmed and charmless hadronic final states is a keystone of the Belle II physics program. It allows for theoretically reliable and experimentally precise constraints on the CKM Unitarity Triangle fit, and is sensitive to effects from non-SM physics. Results on branching ratios, direct CP-violating asymmetries, and polarization of various charmless...
The Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) is undergoing an extensive upgrade program to prepare for the challenging conditions of the High-Luminosity LHC (HL-LHC). A new timing detector in CMS will measure minimum ionizing particles (MIPs) with a time resolution of ~40-50 ps per hit and coverage up to |η|=3. The precision time information from this MIP...
The QCD strong coupling (alpha_s) and the parton distribution functions (PDFs) of the proton are fundamental ingredients for phenomenology at high-energy facilities such as the Large Hadron Collider (LHC).
It is therefore of crucial importance to estimate any theoretical uncertainties associated to them.
Both alpha_s and PDFs obey their own renormalisation-group equations (RGEs) whose...
T2K is a long baseline neutrino experiment producing a beam of muon neutrinos and antineutrinos at the Japan Particle Accelerator Research Centre (JPARC) and measuring their oscillation by comparing the measured neutrino rate and spectrum at a near detector complex, located at JPARC, and at the water-Cherenkov detector Super Kamiokande, located 295 Km away.
Such intense neutrino beam and the...
Many scenarios of physics beyond the Standard Model predict dark sectors containing new particles interacting only feebly with ordinary matter. Collider searches for these scenarios have largely focused on identifying signatures of new mediators, leaving much of the dark sector structure unexplored. We investigate the existence of a light dark-matter bound state, the darkonium,...
The reduction of random motion in particle beams, known as beam cooling, has dramatically extended the science reach of many accelerator facilities, with applications ranging from high-energy colliders to the accumulation of antimatter for tests of CPT symmetry and gravity. One of the primary research frontiers in beam cooling is the realization of advanced cooling concepts that have system...
The LHCb experiment covers the forward region of proton-proton collisions, and it can improve the current electroweak landscape by studying W and Z bosons in this phase space complementary to ATLAS and CMS. Thanks to the excellent detector performance, fundamental parameters of the Standard Model can be precisely measured by studying the properties of the electroweak bosons. In this talk an...
The ATLAS experiment has performed measurements of B-meson rare decays proceeding via suppressed electroweak flavour changing neutral currents, and of mixing and CP violation in the neutral $B_s$ meson system. This talk will focus on the latest results from the ATLAS collaboration, such as rare processes $B^0_s \to \mu \mu$ and $B^0_d \to \mu \mu$, and $CP$ violation in $B^0_s \to J/\psi...
The LHCb spectrometer has the unique capability to function as a fixed-target experiment by injecting gas into the LHC beampipe while proton or ion beams are circulating. The resulting beam+gas collisions cover an unexplored energy range that is above previous fixed-target experiments, but below the top RHIC energy for AA collisions. Here we present new results on antiproton and charm...
We consider the well-motivated scenario of dark matter annihilation with a velocity-dependent cross section. At higher speeds, dark matter annihilation may be either enhanced or suppressed, which affects the relative importance of targets like galactic subhalos, the Galactic Center, or extragalactic halos. We consider a variety of new strategies for determining the associated J-factors, and...
The MIP Timing Detector (MTD) is a new sub-detector planned for the Compact Muon Solenoid (CMS) experiment at CERN, aimed at maintaining the excellent particle identification and reconstruction efficiency of the CMS detector during the High Luminosity LHC (HL-LHC) era. The MTD will provide new and unique capabilities to CMS by measuring the time-of-arrival of minimum ionizing particles with a...
The discovery of the Higgs boson ten years ago and successful measurement of the Higgs boson couplings to third generation fermions by ATLAS and CMS mark great milestones for HEP. The much weaker coupling to the second generation quarks predicted by the SM makes the measurement of the Higgs-charm coupling much more challenging. With the full run-2 data collected by the CMS experiment, a lot of...
We present EKO and yadism, a new DGLAP evolution and DIS code respectively, able to provide PDF independent operators, for fast predictions evaluation.
They both support a wide range of physics and computational features, with a Python API to access the individual ingredients (e.g. strong coupling evolution), and file based output for a language agnostic consumption of the results. They are...
We present a simple extension of the Standard Model with three right-handed neutrinos with an additional U(1$)_\text{F}$ abelian flavor symmetry, with a non standard leptonic charge $L_e-L_\mu-L_\tau$ for lepton doublets and arbitrary right-handed charges. We present a see-saw realization of such a scenario. The baryon asymmetry of the Universe is generated via thermal leptogenesis through...
The main goal of the Mu2e experiment at Fermilab is to search for indications of charged lepton flavor violation [1]. To achieve this goal, experimenters will be searching for the coherent neutrinoless conversion of a negative muon into an electron in the field of a nucleus by measuring 105-MeV electrons emitted in conversions of negative muons into electrons in the nuclear field of an Al...
A resonant structure has been observed at ATOMKI in the invariant mass of electron-positron pairs, produced after excitation of nuclei such as $^8$Be and $^4$He by means of proton beams. Such a resonant structure can be interpreted as the production of an hypothetical particle (X17) whose mass is around 17 MeV.
The MEG-II experiment at the Paul Scherrer Institut whose primary physics goal is...
The Precision Proton Spectrometer (PPS) is a subdetector of CMS introduced for the LHC Run 2, which provides a powerful tool for advancing BSM searches. The talk will discuss the key features of proton reconstruction (PPS alignment and optics calibrations), validation chain with physics data (using exclusive dilepton events), and finally the new results on exclusive diphoton, ttbar, Z+X, and...
The presence of charmonium in the final states of B decays is a very clean experimental signature that allow the efficient collection of large samples of these decays. In addition, decays of beauty hadrons to final states with charmonium resonances proceed mainly through $b\to ccq$ tree-level transitions. The negligible penguin pollutions make these decays excellent probes of Standard Model...
The large gap between a galactic dark matter subhalo's velocity and its own gravitational binding velocity creates the situation that dark matter soft-scattering on baryons to evaporate the subhalo, if kinetic energy transfer is efficient by low momentum exchange. Small subhalos can evaporate before dark matter thermalize with baryons due to the low binding velocity. In case dark matter...
The MoEDAL experiment deployed at IP8 on the LHC ring was the first dedicated search experiment to take data at the LHC in 2010. It was designed to search for Highly Ionizing Particle (HIP) avatars of new physics such as magnetic monopoles, dyons, Q-balls, multiply charged particles, and massive slowly moving charged particles in p-p and heavy-ion collisions. We will report on our most...
The intriguing phenomena emerging in the high-density QCD matter are being widely studied in the heavy ion program at the LHC and will be understood more deeply during the high luminosity LHC (HL-LHC) era. The CMS experiment is under the Phase II upgrade towards the HL-LHC era. A new timing detector is proposed with timing resolution for minimum ionization particles (MIP) to be 30ps. The MIP...
Beam extraction and collimation in particle accelerators using bent crystals as compact elements capable of efficiently steering particle beams has been investigated at several high-energy hadron accelerators, such as SPS and LHC (CERN, Geneva), Tevatron (Batavia, USA), U70 (Protvino, Russia). Due to technological limitations and a not sufficiently deep understanding of the physics at the base...
MINER$\nu$A is a neutrino-nucleus interaction experiment in the Neutrino Main Injector (NuMI) beam at Fermilab. With the $\langle E_{\nu}\rangle = 6\,\, \text{GeV}$ Medium Energy run complete and $12 \times 10^{20}$ protons on target delivered in neutrino and antineutrino mode, MINER$\nu$A combines a high statistics reach and the ability to make precise cross-section measurements in more than...
The LHeC and the FCC-he are the cleanest, high resolution microscopes that the world can build in the nearer future. Through a combination of neutral and charged currents and heavy quark tagging, they will unfold the parton structure of the proton with full flavour decomposition and unprecedented precision. In this talk we will present the most recent studies on the determination of proton...
With the full Run2 pp collision dataset collected at 13 TeV, the interactions of Higgs boson to third generation fermion have been established. For the understanding of Yukawa interaction mechanism, it is crucial to establish the interactions to second generation fermions. This talk presents the latest searches for the Higgs boson decays into second generation fermions, as well as for other...
The nature of Dark Matter (DM) is one of the greatest puzzles of modern particle physics and cosmology. Dark Matter characterisation requires systematic and consistent approach for DM theory space. We propose a first complete classification of minimal consistent Dark Matter models, which provides the missing link between experiments and top-down models. Consistency is achieved by imposing...
The CMS Collaboration is preparing to replace its endcap calorimeters for the HL-LHC era with a high-granularity calorimeter (HGCAL). The HGCAL will have fine segmentation in both the transverse and longitudinal directions, and will be the first such calorimeter specifically optimized for particle-flow reconstruction to operate at a colliding-beam experiment. The proposed design uses silicon...
In Lattice gauge theories , to calculate the PDFs from first principles
it is convenient to consider the Ioffe-time distribution defined through gauge-invariant bi-local operators with spacelike separation. Lattice calculations provide values for a limited range of the distance separating the bi-local operators. In order to perform the Fourier transform and obtain the pseudo- and the...
Electric charge quantization is a long-standing question in particle physics. While fractionally charged particles (millicharged particles hereafter) have typically been thought to preclude the possibility of Grand Unified Theories (GUTs), well-motivated dark-sector models have been proposed to predict the existence of millicharged particles while preserving the possibility for unification....
We discuss measurements of the CP properties of the Higgs boson with the CMS detector, both exploiting Higgs boson production and its decay, as well as searches for non-standard-model CP contributions, and anomalous couplings in general.
The Compact Linear Collider (CLIC) collaboration has presented a project implementation plan for construction of a 380 GeV e+e- linear collider 'Higgs and top factory' for the era beyond HL-LHC, that is also upgradable in stages to 3 TeV. The CLIC concept is based on high-gradient normal-conducting accelerating structures operating at X-band (12 GHz) frequency. Towards the next European...
The LiteBIRD satellite (Lite satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection) will perform the final measurement of the Cosmic Microwave Background polarization anisotropies on large and intermediate angular scales. Its sensitivity and the wide frequency coverage in 15 bands will allow an unprecedented accuracy in the measurement and...
Studies of the CP properties of the Higgs boson in various production modes and decay channels are presented. Limits on the mixing of CP-even and CP-odd Higgs states are set by exploiting the properties of diverse final states.
The measurement of neutral mesons in pp collisions allows a test of perturbative QCD calculations and represents an important baseline for heavy-ion studies. Neutral mesons are reconstructed in ALICE with multiple methods in a very wide range of transverse momenta and thus impose restrictions on the parton distribution functions and fragmentation functions over a wide kinematic region....
We discuss the imprints of a cosmological redshift-dependent pseudoscalar field on the rotation of Cosmic Microwave Background (CMB) linear polarization generated by a coupling $ g_\phi \phi F^{\mu\nu} \tilde F_{\mu \nu}$.
We show how either phenomenological or theoretically motivated redshift dependence of the pseudoscalar field, such as those in models of Early Dark Energy, Quintessence...
The large integrated luminosity collected by the ATLAS detector at the highest proton-proton collision energy provided by LHC allows to probe the presence of new physics that could enhance the rate of rare processes in the SM. The LHC can therefore gain considerable sensitivity for Flavour Changing Neutral Current (FCNC) interactions of the top quark. In the SM, FCNC involving the top-quark...
Several new features have been recently observed in high-multiplicity small collision systems that are reminiscent of the observations attributed to the creation of a quark-gluon plasma, QGP, in Pb-Pb collisions. These include long-range angular correlations on the near and away side of two-particle correlations, non-vanishing second order Fourier coefficients in multiparticle cumulant...
The Heavy Photon Search (HPS) experiment was conceived to search for a light new vector boson A’ that is kinetically mixed with the photon and has a kinetic mixing parameter $ε^2 > 10^{-10}$. A vector boson with a mass in the 20-220 MeV/c$^2$ range could also mediate interactions between the Standard Model and light thermal dark matter. HPS searches for visible signatures of heavy photons in...
A new era of hadron collisions will start around 2028 with the High-Luminosity LHC, that will allow to collect ten times more data that what has been collected so far at the LHC. This is possible thanks to a higher instantaneous luminosity and higher number of collisions per bunch crossing.
To meet the new trigger and data acquisition requirements and withstand the high expected radiation...
In the Superconducting rf Test Facility (STF) at High Energy Accelerator Research Organization (KEK), the cool-down tests of STF-2 cryomodules and the beam operations have been held since 2019.
STF-2 cryomodules are the same type as those for the International Linear Collider (ILC). As a result of beam operation so far, the averaged acceleration gradient of 9 cavities reached 33 MV/m, which...
In this contribution, we present the latest measurements of $\mathrm{D}^0$, $\mathrm{D}^+$ and $\mathrm{D_s}^+$ mesons together with the final measurements of $\Lambda_\mathrm{c}^+$, $\Xi_\mathrm{c}^{0,+}$, $\Sigma_\mathrm{c}^{0,++}$, and the first measurement of $\Omega_\mathrm{c}^0$ baryons performed with the ALICE detector at midrapidity in pp collisions at $\sqrt{s}=5.02$ and $\sqrt{s}=13$...
Parity-violating extensions of Maxwell electromagnetism induce a rotation of the linear polarization plane of photons during propagation. This effect, known as cosmic birefringence, impacts on the Cosmic Microwave Background (CMB) observations producing a mixing of $E$ and $B$ polarization modes which is otherwise null in the standard scenario. Such an effect is naturally parametrized by a...
Today the investigation of dark matter nature, its origin, and the way it interacts with ordinary matter plays a crucial role in fundamental science. Several particle physics experiments at accelerators are searching for hidden particles signals to contribute setting more stringent limits on the characteristics of dark matter.
The Positron Annihilation into Dark Matter Experiment (PADME),...
KKMChh adapts the CEEX (Coherent Exclusive Exponentiation) of the Monte Carlo Program KKMC for Z boson production and decay to hadron scattering. Amplitude-level soft photon exponentiation of initial and final state radiation, together with initial-final interference, is matched to a perturbative calculation to second order next-to-leading logarithm, and electroweak corrections to the hard...
Due to large scale separations, matching is an essential and laborious computational step in the comparison of high-energy new physics models to experimental data.
Matchete is a Mathematica package that automates the one-loop matching from any generic ultraviolet (UV) model to a low-energy effective field theory (EFT) including, but not limited to, SMEFT. The program takes a UV Lagrangian as...
This talk presents the most recent measurements of Higgs boson mass and width by the ATLAS experiment exploiting the Higgs boson decays into two photons or four leptons, and using the full Run 2 dataset of pp collisions collected at 13 TeV at the LHC.
The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a Gadolinium-loaded water Cherenkov detector located in the Booster Neutrino Beam at Fermilab. One of its primary physics goals is to measure the final state neutron multiplicity of neutrino-nucleus interactions. This measurement of the neutron yield as a function of the outgoing lepton kinematics will be useful to constrain...
Outstanding vertexing performance and low-background environment are key enablers of a systematic Belle II program targeted at measurements of charm hadron lifetimes Recent results from measurements of $D^0$ meson, $D^+$ meson and $\Lambda_c$ baryon lifetimes are presented. The results are the most precise to date.
The High Luminosity upgrade of the LHC (HL-LHC) at CERN will provide unprecedented instantaneous and integrated luminosities of around 5 x 10^34 cm-2 s-1 and 3000/fb, respectively. An average of 140 to 200 collisions per bunch-crossing (pileup) is expected. In the barrel region of the Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL), the lead tungstate crystals and avalanche...
Based on the example of the currently widely studied t-channel simplified model with a colored mediator, I will demonstrate the importance of considering non-perturbative effects such as the Sommerfeld effect and bound state formation for accurately predicting the relic abundance and hence correctly inferring the viable model parameters. For instance, I will highlight that the parameter space...
The machine-detector interface (MDI) issues are one of the most complicated and challenging topics at the Circular Electron Positron Collider (CEPC). Comprehensive understandings of the MDI issues are decisive for achieving the optimal overall performance of the accelerator and detector. The CEPC machine will operate at different beam energies, from 45.5 GeV up to 120 GeV, with an instantons...
The main source of systematic uncertainty on neutrino cross section measurements at the GeV scale originates from the poor knowledge of the initial flux. The goal of cutting down this uncertainty to 1% can be achieved through the monitoring of charged leptons produced in association with neutrinos, by properly instrumenting the decay region of a conventional narrow-band neutrino beam. Large...
We report on the search visible decays of exotic mediators from data taken in "beam-dump" mode with the NA62 experiment.
The NA62 experiment can be run as a "beam-dump experiment" by removing the Kaon production target and moving the upstream collimators into a "closed" position.
In 2021, more than 10^17 protons on target have been collected in this way during a week-long data-taking...
With the data collected in Run-2, the Higgs boson can be studied in several production processes using a wide range of decay modes. Combining data in these different channels provides a broad picture of the Higgs boson coupling strengths to SM particles. This talk will cover the latest combination of Higgs boson production and decay modes at CMS to measure the Higgs boson couplings.
I would like to present an intriguing new perspective into such fundamental questions as 1) the origin of the gauge interactions in the Standard Model (SM), and 2) the origin of the quark, lepton and neutrino families' replication and their fundamental properties experimentally observed in Nature. These questions can be addressed by tying together in a common framework both flavour physics and...
I will discuss nonperturbative flavor correlations between pairs of leading and next-to-leading charged hadrons within jets at the Electron-Ion Collider (EIC). We introduce a charge correlation ratio observable $r_c$ that distinguishes same- and opposite-sign charged pairs. Using Monte Carlo simulations with different event generators, $r_c$ is examined as a function of various kinematic...
New ''dark'' fermionic fields charged under a confining dark group ($\text{SU}(N)$ or $\text{SO}(N)$) can come as embeddings in SU(5) multiplets to explain dark matter (DM). These fermions would form bound states due to the confining nature of the dark gauge group. Such dark baryons could prove to be a good neutral DM candidate stable due to a dark baryon number. DM relic abundance sets the...
The Future Circular electron-positron Collider, FCC-ee, is designed for unprecedented precision for particle physics experiments from the Z-pole to above the top pair threshold. This demands a precise knowledge of the center-of-mass energy (ECM) and collision boosts at all four interaction points and all operation energies. Determining the average beam energies is foreseen using resonant...
The weak mixing angle is a probe of the vector-axial coupling structure of electroweak interactions. It has been measured precisely at the Z-pole by experiments at the LEP and SLD colliders, but its energy dependence above $m_Z$ remains unconstrained.
In this contribution we propose to exploit measurements of Neutral-Current Drell-Yan production at the Large Hadron Collider at large...
The sPHENIX detector at the BNL Relativistic Heavy Ion Collider (RHIC) is currently under construction and on schedule for first data in early 2023. Built around the BaBar superconducting solenoid, the central detector consists of a silicon pixel vertexer, a silicon strip detector with single event timing resolution, a compact TPC, novel EM calorimetry, and two layers of hadronic calorimetry....
BESIII has collected 2.93 and 6.32 $fb^-1$ of $e^+e^-$ collision data samples at 3.773 and
4.178-4.226 GeV, respectively. We will report precision measurements of $f_{Ds}$, $|V_{cs}|$
and test of lepton flavor universality by studying the leptonic decays of $D_s -> l^+ \nu$
with $\tau^+ -> \rho^+ \nu, \pi^+ \nu$, and $e^+ \nu \nu$. We will also report the observation of
semileptonic decay...
The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment. It is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are readout by wavelength shifting fibers coupled to photomultiplier tubes (PMTs). The TileCal response and its readout electronics are monitored to better than 1% using...
In this talk, we present the construction of Effective Field Theories (EFTs) in which a chiral fermion, charged under both gauge and global symmetries, is integrated out. These symmetries can be spontaneously broken, and the global ones might also be anomalous. This setting is typically served to study the structure of low-energy axion EFTs, where the anomalous global symmetry can be...
With the full Run 2 pp collision dataset collected at 13 TeV, very detailed measurements of Higgs boson coupling properties can be performed using a variety of final states, identifying several production modes and its decays into bosons and fermions and probing different regions of the phase space with increasing precision. These measurements can then be combined to exploit the strengths of...
The search for Dark Matter (DM) is one of the hottest topics of modern physics. Despite the various astrophysical and cosmological observations proving its existence, its elementary properties remain to date unknown. In addition to gravity, DM could interact with ordinary matter through a new force, mediated by a new vector boson (Dark Photon, Heavy Photon or A'), kinetically mixed with the...
The observation of 3-Jpsi production in a single pp collision is reported. The results are based on the data collected by the CMS experiment in 13 TeV pp collisions. The measured effective double parton scattering cross section is compared to the previous measurements.
We study the production of relativistic relics, also known as dark radiation, in the early Universe and precisely compute their current contribution to the extra number of effective neutrinos. One of the dark radiation candidates is the QCD axion produced from the primordial bath in the early universe. We consider KSVZ and DFSZ axion models and investigate the axion production at different...
In the context of the FCC IS European study, which investigates the feasibility of a 100 km circular $e^{+}e^{-}$ collider for the future high energy physics research, we present the status of the High Energy Booster (HEB) ring for the proposed $e^{+}e^{-}$ option. The HEB is the ring accelerating the electrons and positrons up to the nominal energy before injection into the collider. In order...
In this talk, we present the analytic evaluation of the virtual corrections
to the di-muon production in electron-positron collision in QED, up to the second order in fine structure constant, retaining the full dependence on
the muon mass and considering the electron as a massless particle.
We discuss the computational details, and the high-level of automation it required,
from the...
BESIII has collected 4.4 $fb^{-1}$ of $e^+e^-$ collision data between 4.6 and 4.7 GeV. This unique data offers ideal oppurtunity to determine absolute branching fractions of
$\Lambda_c^+$ decays. We will report the first observation of $\Lambda_c^+ -> n \pi^+$.
Meanwhile, we will report prospect on the studies of semileptonic and the other
hadronic decays of $\Lambda_c^+$ in the near future.
Within the upgrade program of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) for the HL-LHC data taking, the installation of a new timing layer to measure the time of minimum ionizing particles (MIPs) with a time resolution of ~30-40 ps is planned. The time information of the tracks from this new MIP Timing Detector (MTD) will improve the rejection of spurious...
The LHeC and the FCC-he will measure DIS cross sections and the partonic structure of protons and nuclei in an unprecedented range of small $𝑥$. In this kinematic region the non-linear dynamics expected in the high energy regime of QCD should be relevant in a region of small coupling. In this talk we will demonstrate the unique capability of these high-energy colliders for unravelling dynamics...
With the full Run 2 pp collision dataset collected at 13 TeV by the ATLAS experiment, it is now possible to perform detailed measurements of Higgs boson properties in many production and decay modes. In many cases, novel experimental techniques were developed to allow for these measurements. This talk presents a review of a representative selection of such novel techniques, including:...
The Deep Underground Neutrino Experiment (DUNE) is a next generation long baseline neutrino experiment for oscillation physics and proton decay studies. The primary physics goals of the DUNE experiment are to perform neutrino oscillation physics studies, search for proton decay, detect supernova burst neutrinos, make solar neutrino measurements and BSM searches. The liquid argon prototype...
We present a novel benchmark application of a quantum algorithm to Feynman loop integrals. The two on-shell states of a Feynman propagator are identified with the two states of a qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams. To identify such configurations, we exploit Grover's algorithm for querying multiple solutions over...
The high luminosity foreseen in the future electron-positron circular collider (FCC-ee) necessitates very intense multi-bunch colliding beams with very small transverse beam sizes at the collision points. This requires emittances comparable to those of the modern synchrotron light sources. At the same time, the stored beam currents should be close to the best values achieved in the last...
We suggest a new class of models – Fermionic Portal Vector Dark Matter (FPVDM) which extends the Standard Model (SM) with $SU(2)_D$ dark gauge sector. While FPVDM does not require kinetic mixing and Higgs portal, It is based on the Vector-Like (VL) fermionic doublet which couples the dark sector with the SM sector through the Yukawa interaction. The FPVDM model provides a vector Dark...
Automated perturbative computations of cross sections for hard processes in asymmetric hadronic/nuclear $A+B$ collisions at the next-to-leading (NLO) order in $\alpha_s$ will offer a wide range of applications, such as more robust predictions for new experimental programs, the phenomenology of heavy-ion collisions, and the interpretation of the LHC and RHIC data. Such a goal can be achieved...
The Cabibbo-Kobayashi-Maskawa (CKM) mechanism predicts that a single parameter must be responsible for CP-violating phenomena in different quark sectors of the Standard Model (SM). Despite this minimal picture, challenged by non-SM physics, the CKM mechanism has been so-far verified in the bottom and strange sectors, but lacks tests in the complementary charm sector. For the sake of this,...
For both the FCC-ee and the ILC, to exploit properly the respective precision physics program, the theoretical precision tag on the respective luminosity will need to be improved from the analogs of the 0.054 % (0.061%) results at LEP at $M_Z$, where the former (latter) LEP result has (does not have) the pairs correction. At the FCC-ee at $M_Z$ one needs improvement to 0.01%, for example. We...
The LHC luminosity will significantly increase in the coming years. Many of the current detectors in different subsystems need to be replaced or upgraded. The new ones should be capable not only to cope with the high particle rate, but also to provide improved time information to reduce the data ambiguity due to the expected high pileup. The CMS collaboration have shown that the new improved...
We assess the performance of different jet-clustering algorithms, in the presence of different resolution parameters and reconstruction procedures, in resolving fully hadronic final states emerging from the chain decay of the discovered Higgs boson into pairs of new identical Higgs states, the latter in turn decaying into bottom-antibottom quark pairs. We show that, at the Large Hadron...
Hidden particles can help explain many important hints for new physics, but the large variety of viable hidden sector models poses a challenge for the model-independent interpretation of hidden particle searches. We present techniques published in 2105.06477 and 2203.02229 that can be used to compute model-independent rates for hidden sector induced transitions. Adapting an effective field...
DUNE will be a next-generation experiment aiming to provide precision measurements of the neutrino oscillation parameters. It will detect neutrinos generated in the LBNF beamline at Fermilab, using a Near Detector (ND) situated near the beam target where the neutrinos originate and a Far Detector (FD) located 1300 km away in South Dakota. A comparison of the spectra of neutrinos measured at...
We consider Nielsen-Olesen vortices (abelian Higgs model in $2+1$ dimensions) under Einstein gravity in an AdS$_3$ background. We find numerically non-singular solutions characterized by three parameters: the cosmological constant $\Lambda$, the winding number $n$ and the vacuum expectation value (VEV) labeled by $v$. The mass (ADM mass) of the vortex is expressed in two ways: one involves...
In this contribution the nuclear modification factor ($R_\mathrm{AA}$) of prompt charm hadrons and heavy-flavour hadrons decaying to leptons measured in Pb-Pb collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV by the ALICE Collaboration are presented. The measurement of heavy-flavour leptons in Xe-Xe collisions is also discussed. Heavy quarks are a very suitable probe to investigate the...
Leptoquarks are ubiquitous in several extensions of the Standard Model and seem to be able to accommodate the universality-violation-driven $B$-meson-decay anomalies and the $(g-2)_\mu$ discrepancy interpreted as deviations from the Standard Model predictions. In addition, the search for lepton-flavour violation in the charged sector is, at present, a major research program that could also be...
This talk will cover the latest searches for non resonant double Higgs boson production at CMS and interpretations in terms of the Higgs self-coupling. The talk will include the latest combination(s) of HH search channels.
The observations of the Advanced LIGO and Advanced Virgo gravitational-wave detectors have led so far to the confident identification of 90 signals, from the merger of compact binary systems constituted of black holes and neutron stars. These events have offered a new testing ground for General Relativity and better insights into the nuclear equation of state for neutron stars, as well as the...
In 2018, the European Commission (EC)’s Horizon 2020 Programme funded ATTRACT phase 1, which supported 170 breakthrough technology concepts in the domain of detection and imaging technologies across Europe. The projects were each granted €100,000 in seed funding to create a proof-of-concept. ATTRACT co-innovation approach seeks to act as a bridge between two communities – research and industry...
LHCb has collected the world's largest sample of charmed hadrons. This sample is used to measure $D^0 -\overline{D}^0$ mixing and to search for $C\!P$ violation in mixing and interference. New measurements from several decay modes are presented, as well as prospects for future sensitivities.
The international FCC study group published in 2019 a Conceptual Design Report for an electron-positron collider with a centre-of-mass energy from 90 to 365 GeV, a circumference of 98 km and beam currents of up to 1.4 A per beam. The high beam current of this collider create challenging requirements on the injection chain and all aspects of the linac need to be carefully reconsidered and...
The Dark Higgs model is an extension of the Standard Model that describes the phenomenology of dark matter while respecting the SM gauge symmetries. This new approach opens regions of parameter space that are less covered by searches optimized for simpler models of dark matter. In this talk, we present such searches from CMS, focusing on the recent results obtained using the full Run-II...
The Belle II experiment is taking data at the asymmetric SuperKEKB collider, which operates at the Y(4S) resonance. The vertex detector is composed of an inner two-layer pixel detector (PXD) and an outer four-layer double-sided strip detector (SVD). The SVD-standalone tracking allows the reconstruction and identification, through dE/dx, of low transverse momentum tracks. The SVD information is...
The study of the associated production of vector bosons and jets constitutes an excellent environment to check numerous QCD predictions. Total and differential cross sections of vector bosons produced in association with jets have been studied in pp collisions using CMS data. Differential distributions as a function of a broad range of kinematical observables are measured and compared with...
Vector boson scattering is a key production process to probe the electroweak symmetry breaking of the standard model, since it involves both self-couplings of vector bosons and coupling with the Higgs boson. If the Higgs mechanism is not the sole source of electroweak symmetry breaking, the scattering amplitude deviates from the standard model prediction at high scattering energy. Moreover,...
We present a design project for a muon tomography detector aiming to the monitoring of glacier monitoring. The glacier melting process is not completely understood and is considered an hot topic in lieu of the global warming.
Muon Tomography is a widely used technique, employed to perform imaging of the inner structure of large objects, as volcanoes, container and pyramids. This technique...
Sources of geophysical noise (such as wind, sea waves and earthquakes) or of anthropogenic noise (nearby activities, road traffic, etc.) impact ground-based gravitational-wave (GW) interferometric detectors, causing transient sensitivity worsening and gaps in data taking.
During the one year-long third Observing Run (O3: from April 01, 2019 to March 27, 2020), the Virgo Collaboration...
In this talk the current status and plans are presented on the LHeC accelerator concept, towards the new HEP strategy update in about 5 years time. We review the ERL and the IR including the possibility of a joint $eh/hh$ interaction region. The talk also covers FCC-he and refers to a separate presentation of the ERL demonstration facility PERLE. It is based on the comprehensive Conceptual...
The measurement of pair-production of Higgs bosons is one of the key goals of the LHC. Also, beyond the standard model theories involving extra spatial dimensions predict resonances with large branching fractions in a pair of Higgs bosons with negligible branching fractions to light fermions. We present an overview of searches for resonant and nonresonant Higgs boson pair production at high...
We study the impact of triple-leptoquark interactions on matter stability for two specific proton decay topologies that arise at the tree- and one-loop level if and when they coexist. We demonstrate that the one-loop level topology is much more relevant than the tree-level one when it comes to the proton decay signatures despite the usual loop-suppression factor. We subsequently present...
Belle II is a new-generation B-factory experiment operating at the beam intensity frontier, SuperKEKB accelerator, dedicated to exploring new physics beyond the standard model of elementary particles in the flavor sector. Belle II started data-taking in April 2018, using a synchronous data acquisition (DAQ) system based on a pipelined trigger flow control. Belle II DAQ system is designed to...
The production of W/Z bosons in association with heavy flavor jets or hadrons at the LHC is sensitive to the heavy flavor content of the proton and provides an important test of perturbative QCD. We present the production of Z bosons in association with b-tagged large radius jets. The result highlights issues with modeling of additional hadronic activity and provides distinction between...
Searches in CMS for dark matter in final states with invisible particles recoiling against visible states are presented. Various topologies and kinematic variables are explored, including jet substructure as a means of tagging heavy bosons. In this talk, we focus on the recent results obtained using the full Run-II dataset collected at the LHC.
Heavy quarks are primarily produced via initial hard scatterings, and thus carry information about the early stages of the Quark-Gluon Plasma (QGP). Measurements of the azimuthal anisotropy of the final-state heavy flavor hadrons provide information about the initial collision geometry, its fluctuation, and more importantly, the mass dependence of energy loss in QGP. Due to the larger bottom...
The Jagiellonian Positron Emission Tomograph (J-PET) is a detector for: 1. medical imaging by combining metabolic information collected by standard PET with structural information obtained from Positronium lifetime in a concept of morphometric image, 2. tests of discrete symmetries, 3. and even test of quantum entanglement of photons originating from the decay of positronium atoms. The novelty...
In the Standard Model, the ground state of the Higgs field is not found at zero but instead corresponds to one of the degenerate solutions minimising the Higgs potential. In turn, this spontaneous electroweak symmetry breaking provides a mechanism for the mass generation of nearly all fundamental particles. The Standard Model makes a definite prediction for the Higgs boson self-coupling and...
The ProtoDUNE single phase detector (ProtoDUNE-SP) is a prototype liquid argon time projection chamber (LArTPC) for the first far detector module of the Deep Underground Neutrino Experiment (DUNE). ProtoDUNE-SP is installed at the CERN Neutrino Platform. Between October 10 and November 11, 2018, ProtoDUNE-SP recorded approximately 4 million events in a beam that delivers charged pions, kaons,...
LHCb has collected the world's largest sample of charmed hadrons. This sample is used to measure direct $C\!P$ violation in $D$ mesons and charmed baryons. New measurements from several decay modes are presented, as well as prospects for future sensitivities.
Understanding leading non-perturbative corrections, showing up as linear power corrections, is crucial to properly describe observables both at lepton and hadron colliders.
Using an abelian model, we examine these effects for the transverse momentum distribution of a $Z$ boson produced in association with a jet in hadronic collisions, that is one of the cleanest LHC observables, where the...
This talk reviews recent measurements of multiboson production using CMS data. Inclusive and differential cross sections are measured using several kinematic observables.
The realisation of the LHeC and the FCC-he at CERN require the development of the energy recovering technique in multipass mode and for large current $\mathcal{O}(10)$ mA in the SRF cavities. For this purpose, a technology development facility, PERLE, is under design to be built at IJCLab Orsay, which has the key LHeC ERL parameters in terms of configuration, source, current, frequency and...
The Belle II experiment at the SuperKEKB e+e- collider has started data taking in 2018 with the perspective of collecting 50ab-1 during the next several years. The detector is working well with very good performance, but the first years of running are showing novel challenges and indicate the need for an accelerator consolidation and upgrade to reach the target luminosity of 6E35 cm-2s-1,...
The most precise measurements of single and double Higgs boson production cross sections are obtained from a combination of measurements performed in different Higgs boson production and decay channels. While double Higgs production can be used to directly constrain the Higgs boson self-coupling, this parameter can be also constrained by exploiting higher-order electroweak corrections to...
Multi-lepton signals provide a relatively clean and rich testing ground for new physics (NP) at the LHC and, in particular, for searching for lepton flavor universality violation (LFUV) effects mediated by new heavy states of an underlying TeV-scale NP. The potential sensitivity of 3rd generation fermions (the top-quark in particular) to TeV-scale NP along with the persistent anomalies in...
Silicon photomultipliers (SiPM) are solid-state photodetector consisting in arrays of hundreds to thousands of Single Photon Avalanche Diodes (SPADs) per mm$^2$. They feature a photon detection efficiency in excess of 40% at the peak sensitivity wavelength and guarantee an unprecedented photon number resolution at room temperature. These properties, along with low operation voltage,...
The Deep Underground Neutrino Experiment (DUNE) is part of the next generation of neutrino oscillation experiments that seek to definitively answer key questions in the field. It will utilize four 17-kt modules of Liquid Argon Time Projection Chambers (LArTPCs) enabling mm spatial resolutions for unprecedented sensitivity to neutrino oscillation paramters as well as for studies related to...
We present high-accuracy QCD predictions for the transverse-momentum (qT) distribution and fiducial cross sections of Drell-Yan lepton pairs produced in hadronic collisions. At small values of qT we resum to all perturbative orders the logarithmically enhanced contributions up to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy, including all the next-to-next-to-next-to-leading...
Electron-hadron colliders are the ultimate tool for high-precision quantum chromodynamics studies and for probing the internal structure of hadrons. The Hadron Electron Ring Accelerator HERA (DESY, Hamburg, Germany) was the first and up to now only electron-hadron collider ever operated (1991-2007). In 2019 the U.S. Department of Energy initiated the Electron-Ion Collider (EIC) project, the...
Vector boson scattering (VBS) plays a central role in the search for new physics at collider experiments such as ATLAS and CMS at the LHC. Usually predictions for this kind of process are obtained using mainly perturbative approaches in fixed gauges.
In our work we investigate VBS in a manifestly fully gauge-invariant setup. To analyse the differences to gauge-fixed perturbation theory we are...
LHCb is playing a crucial role in the study of rare and forbidden decays of charm hadrons, which might reveal effects beyond the Standard Model. We present the latest searches for, and measurements using, rare charm decay processes with two leptons in the final state.
The addition of a Forward Calorimeter (FoCal) to the ALICE experiment is proposed for LHC Run 4 to provide unique constraints on the low-x gluon structure of protons and nuclei via forward measurements of direct photons. A new high-resolution electromagnetic Si-W calorimeter using both Si-pad and Si-pixel layers is being developed to discriminate single photons from pairs of photons...
Gravitational-wave (GW) cosmology provides a new way to measure the expansion history of the Universe, based on the fact that GWs are direct distance tracers. This property allows at the same time to test gravity at cosmological scales, since in presence of modifications of General Relativity the distance inferred from GWs is modified - a phenomenon known as ''modified GW propagation''. On the...
The ‘4321’ gauge models are promising extensions of the SM that give rise to the $𝑈_1$ vector leptoquark solution to the 𝐵-physics anomalies. Both the gauge and fermion sectors of these UV-constructions lead to a rich phenomenology currently accessible by the Large Hadron Collider. In this talk we describe some of the main LHC signatures and extract exclusion limits using run-II data. In...
Recent HL-LHC studies that were performed by CMS within Snowmass activities are presented. Updates cover different physics topics from Higgs and SM processes.
The presence of a non-baryonic Dark Matter (DM) component in the Universe is inferred from the observation of its gravitational interaction. If Dark Matter interacts weakly with the Standard Model (SM) it could be produced at the LHC. The ATLAS experiment has developed a broad search program for DM candidates, including resonance searches for the mediator which would couple DM to the SM,...
Nb3Sn superconducting radiofrequency (SRF) cavities have the potential to expand new performance capabilities of particle accelerators for the benefit of both the fundamental science and the industrial applications, where potential applications among others include wastewater treatment and medical isotope production. For small-scale applications, Nb3Sn SRF creates the opportunity for a...
We present a parton-level study of electro-weak production of vector-boson pairs at the Large Hadron Collider, establishing the sensitivity to a set of dimension-six operators in the Standard Model Effective Field Theory (SMEFT). Different final states are statistically combined, and we discuss how the orthogonality and interdependence of different analyses must be considered to obtain the...
The strong force is the least known fundamental force of nature, and the effort of precisely measuring its coupling constant has a long history of at least 30 years. This contribution presents a new experimental method for determining the strong-coupling constant from the Sudakov region of the transverse-momentum distribution of Z bosons produced in hadron collisions through the Drell-Yan...
The Future Circular Collider (FCC) study was launched as a worldwide international collaboration hosted by CERN with the goal of pushing the field to the next energy frontier beyond the LHC. The mass of particles that could be directly produced is increased by almost an order of magnitude, and the subatomic distances to be studied are decreased by the same proportion. FCC covers two...
Silicon PhotoMultipliers (SiPM) are rapidly approaching a significant maturity stage, making them a well recognised platform for the development of evolutionary and novel solutions in a wide range of applications for research and industry. However, they are still affected by stochastic terms, notably a significant Dark Count Rate (DCR) at the level of 50 kHz/mm^2 at room temperature, limiting...
In this talk, I will evaluate the potential for extremely high-precision astrometry of a small number of non-magnetic, photometrically stable hot white dwarfs (WD) located at $\sim$ kpc distances to access interesting sources in the gravitational-wave (GW) frequency band from 10 nHz to 1 $\mu$Hz. Previous astrometric studies have focused on the potential for less precise, large-scale...
Experimental hints for lepton flavor universality violation in beauty-quark decay both in neutral- and charged-current transitions require an extension of the Standard Model for which scalar leptoquarks (LQs) are the prime candidates. Besides, these same LQs can resolve the long-standing tension in the muon and the recently reported deviation in the electron $g-2$ anomalies. These tantalizing...
The experimental observation of the phenomena of neutrino oscillations was the first clear hint of physics beyond the Standard Model (SM). The SM needs an extension to incorporate the neutrino masses and mixing often called as beyond SM (BSM). The models describing BSM physics usually comes with some additional unknown couplings of neutrinos termed as Non Standard Interactions (NSIs) [1]. The...
The large dataset of about 3 $\rm ab^{-1}$ that will be collected at the High Luminosity LHC (HL-LHC) will be used to measure Higgs boson processes in detail. Studies based on current analyses have been carried out to understand the expected precision and limitations of these measurements. The large dataset will also allow for better sensitivity to di-Higgs processes and the Higgs boson self...
After the successful installation and first operation of the upgraded Inner Tracking System (ITS2), which consists of about 10 m2 of monolithic silicon pixel sensors, ALICE is pioneering the usage of bent, wafer-scale pixel sensors for the ITS3 for Run 4. Sensors larger than typical reticle sizes can be produced using the technique of stitching. At thicknesses of about 30 µm, the silicon is...
Top quark production can probe physics beyond the SM in different ways. The Effective Field Theory (EFT) framework allows searching for beyond the SM effects in a model independent way. The CMS experiment is pioneering EFT measurements that move towards using the full potential of the data in the most global way possible.
The discovery of dark matter is one of the challenges of high-energy physics in the collider era. Many Beyond-Standard Model theories predict dark matter candidates associated with the production of a single top-quark in the final state, the so-called mono-top. A search for events with one top quark and missing transverse energy in the final state is presented. This analysis explores the fully...
We will present results for a new, high precision, extraction of the strong coupling, $\alpha_s$, at the tau mass scale based on a more precise, non-strange, inclusive vector isovector spectral function. The new spectral function is obtained from a combination of (i) ALEPH and OPAL results for the $2\pi$ pion and $4\pi$ pion tau decay channels, (ii) recent BaBar results for the $\tau \to K^-...
The observed matter-antimatter asymmetry in the universe composes a serious
challenge to our understanding of nature. BNV/LNV decays have been searched in many
experiments to understand this large-scale observed fact, and few in the case of
$e^+e^-$ collision experiments are performed. In this talk, we present recent
results to search for BNV and LNV from $J/\psi$, $D^+$, $D^0$ and...
Beauty quark is one of the best probes of the Quark Gluon Plasma. Its large mass allows to probe the QGP transport properties in the heavy flavor sector through energy loss and diffusion. However, the hadronization of beauty is not as well understood as that of charm due to the smaller cross-section. Clarifying the hadronization mechanism is crucial for understanding the transport properties...
As part of the Physics Beyond Collider study group, the CERN Gamma Factory is an innovative proposal to exploit the potential of CERN to accelerate at ultra-relativistic energies partially stripped ion with high intensity such that their low lying atomic levels be excited by state of art optical systems. This may enable a very broad range of new applications from atomic physics to particle...
Superconducting radio frequency (SRF) cavities are the core technology for particle acceleration in modern accelerators, due to their extremely high quality factors as high as Q > 10^11. These make possible the continuous wave (CW) sustainment of very high electromagnetic fields inside the cavities with minimal dissipation in the cavity walls.
A few years ago, it was realized that the...
The measurement of the matter/antimatter asymmetry in the leptonic sector is one of the highest priority of the particle physics community in the next decades. The ESSnuSB collaboration proposes to design a long baseline experiment based on the European Spallation Source (ESS) at Lund in Sweden. This experiment will be able to measure the Delta_CP parameter with an unprecedent sensitivity...
We perform a complete study of four top quarks production at the LHC in the context of the Standard Model Effective Field Theory (SMEFT). Our analysis is conducted at the tree-level yet investigating all possible QCD- and EW-couplings orders for the contributing dimension-six SMEFT operators. We observe that the formally dominating contributions do not necessarily provide the largest...
I will present NNLO QCD calculation for Wbb production at the LHC. The computation of two-loop scattering amplitude using finite-field framework will be discussed and phenomenological results at the LHC sqrt{s}=8 TeV will be shown. The use of different flavoured jet algorithms will be explored and the comparison with CMS data will be presented.
ALICE 3 is proposed as the next-generation experiment to address unresolved questions about the quark-gluon plasma by precise measurements of heavy-flavour probes as well as electromagnetic radiation in heavy-ion collisions in LHC Runs 5 and 6. In order to achieve the best possible pointing resolution a concept for the installation of a high-resolution vertex tracker in the beampipe is being...
Belle has unique reach for a broad class of models that postulate the existence of dark matter particles with MeV—GeV masses. This talk presents recent world-leading physics results from Belle II searches for dark Higgstrahlung and invisible $Z^{\prime}$ decays; as well as the near-term prospects for other dark-sector searches.
We have investigated the many-body equations of $D$ and $\bar{B}$ mesons in a thermal medium by applying an effective field theory based on chiral and heavy-quark spin symmetries. Exploiting these symmetries within the kinetic theory, we have derived an off-shell Fokker-Planck equation which incorporates information of the full spectral function of these states.
I will present the latest...
Recent high precision determinations of $V_{us}$ and $V_{ud}$ indicate towards anomalies in the first row of the CKM matrix. Namely, the determination of $V_{ud}$ from beta decays and of $V_{us}$ from kaon decays imply a violation of first row unitarity at about $3\sigma$ level. Moreover, there is tension between determinations of $V_{us}$ obtained from leptonic $K\mu 2$ and semileptonic...
Next generation high energy physics experiment will be more granular than current ones, this means more demanding electronics to power the detectors and to process all collected data. Space constrains, cabling, cooling and, last but not least, efficiency are all parameters that need to be optimized during experiment design to have the best performance for data taking.
We will present some...
The mass of the W boson, one of the most important fundamental parameters in particle physics, is tightly constrained by the symmetries of the standard model. Following the observation of the Higgs boson and obtaining its measured mass, the standard model prediction of the W boson mass can be constrained to better than 10 MeV. An experimental measurement of the W boson mass to that level of...
Measurements of jet production in proton-proton collisions at the LHC are crucial for precise tests of QCD, improving the understanding of the proton structure and are important tools for searches for physics beyond the standard model. We present the most recent set of inclusive jet measurements performed using CMS data and compare them to various theoretical predictions.
The use of Application Specific Integrated Circuits (ASIC) is drastically increasing in nuclear and particle physics for applications that require a large number of acquisition channels, keeping the system compact with small power consumption. This work aims to explore the possibility to use the ASIC based Citiroc-1A chip, integrated in the CAEN A5202 Fers-5200 board, to acquire γ energy...
The ongoing U.S. Particle Physics Community Planning Exercise, “Snowmass 2021”, which is organized around discussions spanning ten scientific frontiers, will soon come to an end. This process will provide a scientific vision document for the future of the U.S. high energy physics (HEP) program and aims to define the most important questions for the field as well as to identify promising...
The proposal for a next-generation rare pion decay experiment, PIONEER, has recently been approved to the Paul Scherrer Institute (PSI) ring cyclotron.
PIONEER is strongly motivated by several inconsistencies between Standard Model (SM) predictions and data pointing towards the potential violation of lepton flavor universality. It will probe non-SM explanations of these anomalies through...
Many theories beyond the Standard Model predict new phenomena, such as heavy vectors or scalars, as well as vector-like quarks, in final states containing bottom or top quarks. Such final states offer great potential to reduce the Standard Model background, although with significant challenges in reconstructing and identifying the decay products and modelling the remaining background. The...
The constituents of dark matter are still unknown, and the viable possibilities span a very large mass range. Specific scenarios for the origin of dark matter sharpen the focus on a narrower range of masses: the natural scenario where dark matter originates from thermal contact with familiar matter in the early Universe requires the DM mass to lie within about an MeV to 100 TeV. Considerable...
The High Luminosity Large Hadron Collider (HL-LHC) at CERN is expected to collide protons at a center-of-mass energy of 14 TeV and to reach the unprecedented peak instantaneous luminosity of 7 x 10^34 cm^-2 s^-1 with an average number of pileup events of 200. This will allow the ATLAS and CMS experiments to collect integrated luminosities up to 4000 fb^-1 during the project lifetime. To cope...
Electromagnetic probes such as photons and dielectrons are a unique tool to study the space-time evolution of the hot and dense matter created in ultra-relativistic heavy-ion collisions. They are produced by a variety of processes during all stages of the collision with negligible final-state interactions. At low dielectron invariant mass ($m_{\rm ee}$), thermal radiation from the hot hadron...
We present high statistics measurements of primary cosmic rays Helium, Carbon, Oxygen, Neon, Magnesium, Silicon, Sulfur, Iron, and Nickel with AMS. The properties of He-C-O, Ne-Mg-Si, S, Fe and Ni fluxes are discussed.
The first-order electroweak phase transition (FOEWPT) plays an important role in the scenario of electroweak baryogenesis. In this talk, we discuss the first-order phase transitions in a new effective field theory. We show that the SMEFT is not appropriate when we discuss the FOEWPT. We also show that the parameter regions satisfying the sphaleron decoupling condition can be searched at future...
Fast neutron spectroscopic measurements are an invaluable tool for many scientific and industrial applications, in particular for Dark Matter (DM) searches. In underground DM experiments, neutron induced background produced by cosmic ray muons and the cavern radioactivity, can mimic the expected DM signal. However, the detection methods are complex measurements and thus measurements remain...
We present high statistics measurements of AMS-02 of the secondary cosmic rays Lithium, Beryllium, Boron, and Fluorine. The properties of the secondary cosmic ray fluxes and their ratios to the primary cosmic rays Li/C, Be/C, B/C, Li/O, Be/O, B/O, and F/Si are discussed. A systematic comparison with the latest GALPROP cosmic ray model is presented.
The strong electromagnetic field generated by the colliding nuclei in heavy-ion collisions can be represented by a spectrum of photons, leading to photon-induced interactions. While such interactions are traditionally studied in ultra-peripheral collisions (UPC) without any nuclear overlap, significant enhancements of dilepton pairs and J/$\psi$ production at very low transverse momentum...
Circular muon colliders offer the prospect of colliding lepton beams at unprecedented center-of-mass energies. The continuous decay of stored muons poses, however, a significant technological challenge for the collider and detector design. The secondary radiation fields induced by decay electrons and positrons can strongly impede the detector performance and can limit the lifetime of detector...
High energy e$^+$e$^-$ colliders offer unique possibility for the most general dark matter search based on the mono-photon signature. Analysis of the energy spectrum and angular distributions of photons from the initial state radiation can be used to search for hard processes with invisible final state production.
Most studies in the past focused on scenarios assuming heavy mediator exchange....
The Large Hadron Collider at CERN will undergo a major upgrade in the Long Shutdown 2 from 2026-2028. The High Luminosity LHC (HL-LHC) is expected to deliver peak instantaneous luminosities up to 7.5E34/cm2/s and an integrated luminosity in excess of 3000/fb during ten years of operation. In order to fully exploit the delivered luminosity and to cope with the demanding operating conditions,...
Electroweak W and Z bosons created in hard-scattering processes at the early stage of the collisions are efficient probes of the initial state of the collisions. While the measurements of W and Z bosons in p–Pb and Pb–Pb collisions provide insights on the nuclear modification of the parton distribution functions, the results in pp collisions are a stringent test of perturbative QCD-based...
The Standard Model effective field theory (SMEFT) provides a general framework
to include the effects of the beyond standard model physics residing at a certain higher energy scale $\Lambda$. We focus on the modification of top-quark Yukawa coupling, which is one of the important avenues to study EWSB. With this motivation, we consider the production of the tHq process at the LHC. In this...
Within the High Energy Physics community, when dealing with sensors of almost any sort, detection efficiency is certainly one of the key parameter at play. By further narrowing the field to pixel detectors, efficiencies of the order of 99% are the baseline, with far better figures actually characterising present state-of-the-art devices. Physics events are costly and time-consuming to produce,...
We present results of searches for massive vector-like third-generation quark and lepton partners using proton-proton collision data collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV. Pair production of vector-like leptons is studied, with decays into final states, containing third generation quarks and leptons. Vector-like quarks are studied in both single...
We present a minimal extension of the Type II Seesaw neutrino mass model with a spontaneously generated CP phase. We demonstrate that this minimal model that augments the Type II Seesaw framework by an additional right handed neutrino and an inert triplet can explain the neutrino oscillation data with minimal free parameters while providing a viable dark matter candidate.
Cosmic Nitrogen, Sodium, and Aluminum nuclei are a combination of primaries, produced at cosmic-ray sources, and secondaries resulting from collisions of heavier primary cosmic rays with the interstellar medium. We present high statistics measurements of the N, Na and Al rigidity spectra. We discuss the properties and composition of their spectra and present a novel model-independent...
The NA62 experiment at CERN collected world's largest dataset of charged kaon decays to di-lepton final states in 2016-2018, using dedicated trigger lines. Upper limits on the rates of several K+ decays violating lepton flavour and lepton number conservation, obtained by analysing this dataset, are presented.
The European Laboratory Directors Group (LDG) was mandated by CERN Council in 2021 to oversee the development of an Accelerator R&D High Energy Physics Accelerator Roadmap. To this end, a set of expert panels was convened, covering the five broad areas of accelerator R&D highlighted in the ESPPU, drawing upon the international accelerator physics community for their membership, and tasked to...
In the high-luminosity era of the Large Hadron Collider, the instantaneous luminosity is expected to reach unprecedented values, resulting in up to 200 proton-proton interactions in a typical bunch crossing. To cope with the resulting increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The innermost...
Extensions of the Two Higgs Doublet model with a complex scalar singlet (2HDMS) can accommodate all current experimental constraints and are highly motivated candidates for Beyond Standard Model Physics. It can successfully provide a dark matter candidate as well as explain baryogenesis and provides gravitational wave signals. In this work, we focus on the dark matter phenomenology of the...
We present compact analytical expressions for neutrino oscillation probabilities, in the presence of invisible neutrino decay, where matter effects have been explicitly included. The probabilities are obtained both in the 2-flavor and 3-flavor formalisms.
The inclusion of decay leads to a non-Hermitian effective Hamiltonian, where the Hermitian component represents oscillation, and the...
The ORIGIN project (Optical Fiber Dose Imaging for Adaptive Brachytherapy), supported by the European Commission within the Horizon 2020 framework program, targets the production and qualification of a real-time radiation dose imaging and source localization system for both Low Dose Rate (LDR) and High Dose Rate (HDR) brachytherapy treatments, namely radiotherapy based on the use of...
High-precision intra-bunch-train beam orbit feedback correction systems have been developed and tested in the ATF2 beamline of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. Two systems are presented:
1) The vertical position of the bunch measured at two stripline beam position monitors (BPMs) is used to calculate a pair of kicks which are...
Ultrarelativistic Heavy Ions of large charge Z are accompanied by a large flux of
Weizs\"acker–Williams photons. This opens up the opportunity to study a variety of photo-induced nuclear processes, as well as photon-photon processes.
We would like to present a formalism which allows to calculate differential distributions of
leptons produced in semi-central (impact parameter < 2 $\times$...
The KOTO experiment studies the CP-violating rare decay $K_L \to \pi^0 \nu \overline{\nu}$, conducting with the 30-GeV Main Ring Proton Synchrotron at J-PARC in Japan. In the previous analysis on data taken in 2016-18, we found three candidate events in the signal region with a single event sensitivity of $7\times 10^{-10}$, which is statistically consistent with the background expectation....
The quest for new physics beyond the Standard Model is boosted
by the recently observed deviation in the anomalous magnetic moments of
muon and electron from their respective theoretical prediction.
In the present work, we have proposed a suitable
extension of the minimal $L_{\mu}-L_{\tau}$ model to address
these two experimental results as the minimal
model is unable to provide any...
AMoRE (Advanced Mo-based Rare process Experiment) is an international project to search for the neutrinoless double beta (0$\nu\beta\beta$) decay of $^{100}$Mo in enriched Mo-based scintillating crystals using metallic magnetic calorimeters in a mK-scale cryogenic system. The project aims at operating the detector in a zero-background condition to detect this extremely rare decay event in the...
Muon tomography consists in using muons naturally produced by cosmic rays interactions with the high atmosphere to probe structures in a neither invasive nor destructive way. Following the first muography of a water tower using a muon telescope based on Micro-Pattern Gaseous Detectors and developed at Commissariat à l’énergie atomique et aux énergies alternatives (CEA) Saclay in 2015, the...
Measurements of event shapes and jet substructure observables can serve as in-depth probes of the strong interactions. Data on deep-inelastic scattering collected at the HERA $ep$ collider using the H1 detector have been analysed in the kinematic region of large momentum transfer $Q^2>150$ GeV$^2$. Various new measurements of the hadronic final state, as listed in the following, are presented...
Beryllium nuclei are expected to be mainly produced by the fragmentation of primary cosmic rays (CR) during their propagation. Therefore, their measurement is essential in the understanding of cosmic ray propagation and sources. In particular, the $^{10}$Be/$^9$Be ratio can be used as a radioactive clock providing the measurement of CR residence time in the Galaxy. In this contribution, the...
We present a threshold resummation calculation for the associated production of squarks and gauginos at the LHC to the next-to-leading logarithmic (NLL) accuracy, matched to next-to-leading order (NLO) QCD corrections. Analytical results are obtained for the process-dependent soft anomalous dimension and the hard matching coefficient. Numerically, the NLL contributions increase the total NLO...
The High Luminosity Large Hadron Collider (HL-LHC) is expected to provide an integrated luminosity of 4000 fb-1, that will allow to perform precise measurements in the Higgs sector and improve searches of new physics at the TeV scale.
The HL-LHC higher particle fluences and will requested radiation hardness, the increased average proton-proton pile-up interactions, require a significant...
Axion, a hypothetical pseudo-scalar particle, is a direct consequence of Peccei-Quinn mechanism which was proposed to solve the strong CP problem in 1977. It is also a plausible candidate for dark matter. The axion feebly interacts with the Standard Model (SM) particles, which makes it extremely challenging to detect a sign of its existence. Nevertheless, there have been many efforts to search...
We review recent CMS results on diffractive and exclusive processes in heavy ion collisions, including photon-induced processes in ultraperipheral collisions.
The KLOE-2 Collaboration continues the KLOE long-standing tradition of flavour physics precision measurements in the kaon sector with a new $K_S \to \pi e \nu$ branching fraction measurement.
Based on a sample of 300 million $K_S$ mesons produced in $\phi \to K_L K_S$ decays recorded by the KLOE experiment
at the DA$\Phi$NE $e^+e^-$ collider, the $K_S \to \pi e \nu$ signal selection...
Analysis of anisotropy of the arrival directions of galactic protons, helium, carbon and oxygen has been performed with the Alpha Magnetic Spectrometer on the International Space Station. These results allow to investigate the origin of the spectral hardening observed by AMS in these cosmic ray species. The AMS results on the dipole anisotropy are presented along with the discussion of the...
Results from the CMS experiment are presented for supersymmetry searches targeting so-called compressed spectra. Those have small mass splittings between the different supersymmetric partners. Such a spectrum presents unique experimental challenges. This talk describes the new techniques utilized by CMS to address such difficult scenarios. The searches use proton-proton collision data with...
We use the Fitmaker tool to incorporate the recent CDF measurement of $m_W$ in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators ${\cal O}_{HWB}$, ${\cal O}_{HD}$, ${\cal O}_{\ell \ell}$ or ${\cal O}_{H \ell}^{(3)}$ with a non-zero...
In particle therapy, proton or ion beams deposit a large fraction of their energy at the end of their paths, i.e. the delivered dose can be focused on the tumor, sparing nearby tissue due to a low entry and almost no exit dose. A novel imaging modality using protons promises to overcome some limitations of particle therapy and will allow the full exploitation of its potential. Being able to...
Neutrino physics lies among the most obscure and fascinating sections of the Standard Model particle landscape. In particular, the measurement of their absolute mass is still an unresolved issue pursued by several experiments over the years. The state of the art concerning the model-independent $\nu$ mass hunting is KATRIN. Reaching its ultimate goal, it will push to the extreme the...
The high luminosity upgrade for the Large Hadron Collider at CERN requires a complete overhaul of the current inner detectors of ATLAS and CMS. These new detectors will consist of all-silicon tracking detectors. A serial powering scheme has been chosen in order to cope with the various constraints of the new detectors. In order to verify this new powering scheme and provide input for various...
The hybrid-symmetric lattice was studied extensively using high-precision spin and beam dynamics simulation software programs. A storage ring, where the bending is provided by electric field plates while focusing is achieved by magnetic quadrupoles with alternating sign fields, can effectively store polarized proton beams simultaneously. This is the only known configuration where the main...
We consider the direct-detection rate for Majorana dark matter scattering
off nuclei in an SU(2) × U(1) invariant effective theory and we compare it against the LHC reach. Current constraints from direct detection experiments are already bounding the mediator mass to be well into the TeV range for WIMP-like scenarios. This motivates a consistent and systematic exploration of the parameter...
The quantum interference between the decays of entangled neutral kaons is a very powerful tool for testing the quantum coherence of the entangled kaon pair state. The studied process φ → KS KL → π+ π− π+ π− exhibits the characteristic Einstein–Podolsky–Rosen correlations that prevent both kaons to decay into π + π − at the same time. The newly published result is based on data sample...
The original idea that a quantum machine can potentially solve many-body quantum mechanical problems more efficiently than classical computers is due to R. Feynman who proposed the use of quantum computers to investigate the fundamental properties of nature at the quantum scale. In particular, the solution of problems in electronic structure, many-body physics, and high energy physics (just to...
The Electron Capture in $^{163}$Ho experiment (ECHo) is a running experiment for the determination of the neutrino mass scale via the analysis of the end point region of the $^{163}$Ho electron capture spectrum. In the first phase, called ECHo-1k, data was collected for several months with about 60 metallic magnetic calorimeter (MMC) pixels enclosing $^{163}$Ho for an activity of about 1Bq per...
The precision measurement of daily proton fluxes with AMS during ten years of operation in the rigidity interval from 1 to 100 GV is presented. The proton fluxes exhibit variations on multiple time scales. From 2014 to 2018, we observed recurrent flux variations with a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities...
The energy frontier of particle physics is pushed forward by implementation of innovative technologies and approaches. Bent crystals can be used as a novel type of beam optics with steering power comparable to that of a magnetic dipole up to over $10^3$ Tesla by exploiting the phenomenon of planar channeling. Several applications in accelerators have been proposed, such as beam extraction, and...
A proper understanding of non-perturbative effects, which manifest themselves as linear power corrections, is needed to describe many observables measured at colliders. We report on recent progress in the calculation of linear power corrections to shape variables such as the $C$-parameter and thrust in the three-jet region arising from infrared renormalons. Previously, only the results at the...
In scenarios with very small dark matter (DM) couplings and small mass splittings between the DM and other dark-sector particles, so-called "coscattering" or "conversion-driven freeze-out" can be the dominant mechanism for DM production. We present the inclusion of this mechanism in micrOMEGAs together with a case study of the phenomenological implications in the singlet-triplet model. For the...
The upgrade to the High-Luminosity LHC (HL-LHC), with its increase to 140-200 proton-proton collisions per bunch crossing, poses formidable challenges for track reconstruction. The Inner Tracker (ITk) is a silicon-only replacement of the current ATLAS tracking system as part of its Phase-II upgrade, designed to meet the challenges and continue to deliver high-performance track reconstruction....
We study in detail the viability and the patterns of a strong first-order electroweak phase transition as a prerequisite to electroweak baryogenesis in the framework of $Z_3$-invariant Next-to-Minimal Supersymmetric Standard Model (NMSSM), in the light of recent experimental results from the Higgs sector, dark matter (DM) searches and those from the searches of the lighter chargino and...
The detailed measurement of the positron fluxes from May 20, 2011 to October 29, 2019 with the Alpha Magnetic Spectrometer on the International Space Station, is presented. Time variation of the fluxes on different time scales associated with the solar activity over half solar cycle 24 is shown. The measured effect of charge sign dependent effects on particles with the same mass is discussed.
The Future Circular Collider (FCC) is a post-LHC project aiming at direct and indirect searches for physics beyond the SM in a new 100 km tunnel at CERN. In addition, the FCC-ee offers unique possibilities for high-precision studies of the strong interaction in the clean environment provided by e+e- collisions, thanks to its broad span of center-of-mass energies ranging from the Z pole to the...
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, which resulted in a number of breakthroughs. Some of the most recent AMS-02 results are the measurements of the spectra of CR fluorine, sodium and aluminum up to 2 TV. Given their low solar system abundances, a significant fraction of each...
HEPscape is an escape room about high energy physics. The project has been designed and created by researches from the National Institute of Physics in Rome with the support of Sapienza, University of Rome.
Escape rooms for learning purposes are more and more frequent nowadays. HEPscape represents, based on the knowledge of the authors, the first particle physics escape room ever built so...
We discuss the phase diagram of QCD in the presence of a strong magnetic background field, providing numerical evidence, based on lattice simulations of QCD with 2+1 flavours and physical quark masses, that the QCD crossover turns into a first order phase transition for large enough magnetic field, with a critical endpoint located between $eB = 4$ GeV$^2$ (where we found an analytic crossover...
ALICE has undergone a major upgrade in preparation of LHC Run 3 (2022-2025). The new Inner Tracking System is completely based on Monolithic Active Pixel Sensors, the Time Projection Chamber was equipped with GEM-based readout chambers, and the muon system was upgraded and extended by the Muon Forward Tracker. New trigger detectors were also installed to allow the clean identification of...
We present searches for additional neutral and charged Higgs boson with the CMS detector using the full run 2 dataset. The presented searches also include decays of heavy Higgs bosons into other Higgs bosons (both the 125 GeV Higgs boson and other additional Higgs bosons).
Circular colliders have the advantage of delivering collisions to multiple interaction points (up to 4 IPs for e+e- collisions at the FCC-ee facility) that allow for different detector designs to be studied and optimized individually aiming at complementary physics target studies. On the one hand, the detectors must satisfy the constraints imposed by the invasive interaction region layout. On...
The super-weak model is a particle physics model which extends the Standard Model (SM) by a new U(1) gauge symmetry. In addition to the new mediator $Z'$, a scalar particle $\chi$ is added to deal with the meta-stability of the SM vacuum, and right-handed neutrinos are introduced to account for the non-vanishing neutrino masses. In this talk, we investigate the cosmological implications of...
Lepton flavor violation in the charged lepton sector (cLFV) is expected to be unobservably small in the Standard Model (SM). On the other hand, many new physics theories predict rates of cLFV near the sensitivity of the current experiments. Hence, this is a very sensitive probe for physics beyond the SM, and the evidence for such new physics would be unambiguous if a positive observation is...
The Particle Physics Community Planning Exercise (a.k.a. “Snowmass”) is the form of organization of regular, every 6 to 8 years, discussions among the entire particle physics community to develop a scientific vision for the future of particle physics in the U.S. and its international partners. The Snowmass'21 Accelerator Frontier activities
include discussions on high-energy hadron and...
The reconstruction of electrons and photons in CMS depends on topological clustering of the energy deposited by an incident particle in different crystals of the electromagnetic calorimeter (ECAL). These clusters are formed by aggregating neighbouring crystals according to the expected topology of an electromagnetic shower in the ECAL. The presence of upstream material causes electrons and...
The Circular Electron Positron Collider is a proposed, high luminosity factory for massive SM particles. It aims to deliver millions of Higgs bosons, trillions of Z bosons, hundreds millions of W bosons in 10 - 20 years of data taking, and has the potential to upgrade its center of mass energy to 360 GeV, producing decent statistics of t-tbar events. The CEPC is expected to search for New...
Neutron star (NS) as the dark matter (DM) probe has gained a broad
attention recently, either from heating due to DM annihilation or
its stability under the presence of DM. In this work, we investigate
spin-$1/2$ fermionic DM $\chi$ charged under the $U(1)_{X}$
in the dark sector. The massive gauge boson $V$ of
$U(1)_{X}$ gauge group can be produced in NS via DM annihilation. The produced...
In light-front holographic QCD a Schr\"{o}dinger-like equation determines the transverse mode in the chiral limit. The supersymmetric formulation of holographic QCD each baryon has two supersymmetric partners, a meson and a tetraquark. The mass degeneracy of these partner states is lifted by the combination of two mechanisms: chiral symmetry breaking and longitudinal confinement. In this...
We perform an analysis of leptogenesis in the context of a simple extension of the Standard Model with two fermions, one charged ($\chi $) and one neutral ($\psi$), in addition to three right-handed neutrinos, interacting through a charged gauge singlet scalar $S$. The dark sector ($\chi$, $\psi$ and $S$) interacts feebly and produces a relic density consistent with the existing data. The ...
We present a study of the process $e^+e^- \to \pi^+\pi^-\pi^0$ at $BABAR$ using the initial-state radiation technique. The analysis is based on the full $BABAR$ data set, 469 fb$^{-1}$, recorded at and near the $\Upsilon(4{\mathrm{S}})$ resonance. From the fit to the measured $3\pi$ mass spectrum we determine the products $\Gamma(V\to e^+e^-){\cal{B}}(V\to 3\pi)$ for the omega and phi...
The MicroBooNE detector is a liquid argon time projection chamber (LArTPC) with an 85 ton active mass that receives flux from the Booster Neutrino and the Neutrinos from the Main Injector (NuMI) beams, providing excellent spatial resolution of the reconstructed final state particles. Since 2015 MicroBooNE has accumulated many neutrino and anti-neutrino scattering events with argon nuclei...
We present searches for rare and beyond-the-standard-model decays of the Higgs boson with the CMS detector using the full run 2 dataset. Amongst others, Higgs boson decays to two (pseudo-) scalars and to invisible particles are discussed.
This contribution presents “The Hidden Force. Women Scientists in Physics and in History”, where the lives of four twentieth-century female scientists, who overcame the stereotypes of their era, invite us to discover the importance of women's contributions to the advancement of knowledge. This is actually more than a theatre play for science outreach, it is a project to nurture a dialog with...
The Mu3e experiment at the Paul-Scherrer-Institut searches for the charged lepton flavour violating decay $\mu^+\rightarrow e^+e^-e^+$. This decay mode is extremely suppressed in the Standard Model, such that any observation would be a clear signature for new physics being at play. The experiment will be conducted in two phases. In Phase I, a single event sensitivity of $2 \times 10^{-15}$ is...
During the long shutdown 2, the ALICE experiment undertook major detector and software upgrades bringing a paradigm shift in the operation and performance of the new detector.
Run 3 started at the end of October 2021 with the first colliding proton-proton beams, the so-called "pilot beam". On this occasion, the ALICE experiment successfully recorded pp collisions at 900 GeV, proving its...
This contribution presents the status of the HL-LHC project, the draft schedule and the associated operational scenarios. The contribution will focus on expected beam parameters, machine optics and cycles, and performance estimates.
Precision studies of the properties of the Higgs and gauge bosons may provide a unique window for the discovery of new physics at the LHC. New phenomena can in particular be revealed in the search for lepton-flavor-violating or exotic decays of the Higgs and Z bosons, as well as in their possible couplings to hidden-sector states that do not interact under Standard Model gauge transformations....
The MicroBooNE collaboration recently released a series of measurements aimed at investigating the nature of the excess of low-energy electromagnetic shower events observed by the MiniBooNE collaboration. In this talk, we will present the latest results from both a search of single photons in MicroBooNE, as well as a series of three independent analyses leveraging different reconstruction...
While simulation is a crucial cornerstone of modern high energy physics, it places a heavy burden on the available computing resources. These computing pressures are expected to become a major bottleneck for the upcoming high luminosity phase of the LHC and for future colliders, motivating a concerted effort to develop computationally efficient solutions. Methods based on generative machine...
The Extreme Energy Events Project (EEE) represented since its starting phases in 2005 a breakthrough in outreach activities in High Energy Physics. The innovative idea of EEE is a strong and direct involvement of high school students in the construction and operation of an experiment to measure Extensive Atmospheric Showers (EAS) on Earth surface.
The EEE Project is based on an array of...
We present new lattice results of the ETM Collaboration, obtained from extensive simulations of lattice QCD with dynamical up, down, strange and charm quarks at physical mass values, different volumes and lattice spacings, concerning the SM prediction for the so-called intermediate window (W) and short-distance (SD) contributions to the leading order hadronic vacuum polarization (LOHVP) term...
The future circular electron-positron collider (FCCee) is receiving much attention in the context of the FCC Feasibility Study currently in progress in preparation for the next EU strategy update. We present IDEA, a detector concept optimized for FCCee and composed of a vertex detector based on DMAPS, a very light drift chamber, a silicon wrapper, a dual readout calorimeter outside a thin 2...
Scattering amplitudes are the fundamental building blocks of collider observables. Comparing high precision measurements to theory predictions requires computing them to high perturbative order. The growth in the number of loops significantly increases the complexity of the problem. Using novel mathematical methods allowed to compute QCD corrections to four-point massless processes at...
Precision measurements of flavour-violating processes are a sensitive tool to search for signals beyond the Standard Model (SM). In this context, the MEG II and Mu3e experiments at the Paul Scherrer Institut (PSI) search for the two muon decays $\mu^+ \to e^+\gamma$ and $\mu^+ \to e^+e^-e^+$, respectively. In addition to their main channels, both experiments appear to be competitive in...
Present and upcoming neutrino experiments can be used to probe Dark Sectors (DS).
We consider light DS interacting with the SM through well-motivated irrelevant portals. In our model independent approach, the DS is only characterized by two scales: the cut-off scale ΛUV of the irrelevant portals , and the mass gap ΛIR of the DS, identified with the mass of its lightest particle (LDSP). If the...
The Large Hadron Collider (LHC) recently completed its Run-2 operation period (2015-2018) which delivered an integrated luminosity of 156 fb-1 at the centre-of-mass $pp$ collision energy of 13~TeV. This marked 10 years of successful operation by the ATLAS Semiconductor Tracker (SCT), which operated during Run-2 with instantaneous luminosity and pileup conditions that were far in excess of what...
Following the recommendations of the 2020 update of the European Strategy for Particle Physics (ESPP), CERN, in collaboration with many institutes around the globe, is investigating the feasibility of a 100 TeV centre-of-mass hadron collider with an electron-positron collider as a pre-stage.
This study builds upon the conceptual design reports delivered by the Future Circular Collider (FCC)...
Commonly known as Boltzmann suppression is the key ingredient to create chemical imbalance for thermal dark matter. In a degenerate/quasi degenerate dark sector chemical imbalance can also be generated from a different mechanism which is analogous to the radioactive decay law, known as co-decaying dark matter. In this work, we have studied the dynamics of a multicomponent thermally decoupled...
GRaffa is a project designed and carried out by the Associazione Giovanile Le Scie Fisiche, funded by Lazio Region, with the aim of sharing the excitement of science and increasing appreciation for it, mainly through daily experiences of physical phenomena. It was conceived by young physics and philosophy researchers (mainly postdocs and PhD students) to spread physics and scientific culture...
The anomalous magnetic moment of the muon $a_\mu = (g-2)_\mu/2$ has been measured at the Brookhaven National Laboratory in 2001 and recently at the Fermilab Muon $g - 2$ Experiment. The results deviate by 4.2 $\sigma$ from the Standard Model predictions, where the most dominant source of theoretical error comes from the Hadronic Leading Order (HLO) contribution $a_\mu^{\mathrm{HLO}}$. MUonE is...
During Run 2 of the Large Hadron Collider at CERN, the LHCb experiment has spent more than 80% of the pledged CPU time to produce simulated data samples. The upcoming upgraded version of the experiment will be able to collect larger data samples, requiring many more simulated events to analyze the data to be collected in Run 3. Simulation is a key necessity of analysis to interpret signal vs...
The aim of this presentation is to introduce a dark extension of the SM that communicates to it through three portals: neutrino, vector and scalar mixing, by which it could be possible to explain the LEE at MiniBooNE. In the model, Heavy Neutral leptons are produced by upscattering via a dark photon, with masses around 10 MeV – 2 GeV, and subsequently decay into an electron-positron pair and...
The IDEA drift chamber is designed to provide efficient tracking, a high precision momentum measurement, and excellent particle identification by exploiting the cluster counting technique. The ionization process by charged particles is the primary mechanism used for particle identification (dE/dx). However, the significant uncertainties in the total energy deposition represent a limit to the...
The QCD topological observables are essential inputs to obtain theoretical predictions about axion phenomenology, which are of utmost importance for current and future experimental searches for this particle. Among them, we find the topological susceptibility, related to the axion mass.
We present lattice results for the topological susceptibility in QCD at high temperatures obtained...
The low-background environment of electron-positron collisions along with the large expected sample size and an hermetic detector make Belle II the premier experiment for studying tau-lepton physics. This talk presents recent world-leading physics results from Belle II searches for tau decays into a scalar non-SM particle and a lepton. Perspectives on tests of lepton (flavor) universality and...
The tracking performance of the ATLAS detector relies critically on its 4-layer
Pixel Detector. As the closest detector component to the interaction point, this detector is subjected to a significant amount of radiation over its lifetime. By the end of the LHC proton-proton collision RUN2 in 2018, the innermost layer IBL, consisting of planar and 3D pixel sensors, had received an integrated...
The International Linear Collider (ILC) is an electron–positron collider with a total length of around 20 km in its initial configuration as a 250 GeV centre-of-mass energy Higgs factory.
Key technologies at ILC are superconducting RF (SRF) acceleration in the main linacs and nano-beam technology at the interaction point (IP). A total of about 8,000 superconducting niobium cavities will be...
Tau leptons are a key ingredient to perform many Standard Model measurements and searches for new physics at LHC. The CMS experiment has released a new algorithm to discriminate hadronic tau lepton decays against jets, electrons, and muons. The algorithm is based on a deep neural network and combines fully connected and convolutional layers. It combines information from all individual...
We calculate the relativistic six-meson scattering amplitude at low energy within the framework of QCD-like theories with $n$ degenerate quark flavors at next-to-leading order in the chiral counting. We discuss the cases of complex, real and pseudo-real representations, i.e. with global symmetry and breaking patterns $\text{SU}(n)\times\text{SU}(n)/\text{SU}(n)$ (extending the QCD case),...
The latest measurement of the muon g-2 announced at Fermilab exhibits a 4.2$\sigma$ discrepancy from the currently accepted Standard Model prediction. The main source of uncertainty on the theoretical value is represented by the leading order hadronic contribution $a_{\mu}^{HLO}$, which is traditionally determined through a data-driven dispersive approach. A recent calculation of...
The Short-Baseline Near Detector (SBND) will be one of three liquid Argon Time Projection Chamber (LArTPC) neutrino detectors positioned along the axis of the Booster Neutrino Beam (BNB) at Fermilab, as part of the Short-Baseline Neutrino (SBN) Program. The detector is currently in the construction phase and is anticipated to begin operation in the first half of 2023. SBND is characterised by...
The IDEA detector concept for a future e+e− collider adopts an ultra-low mass drift chamber as central tracking system. The He based ultra-low mass drift chamber is designed to provide efficient tracking, a high precision momentum measurement, and excellent particle identification by exploiting cluster counting technique. Studies with the Garfield++ simulation confirm that the cluster counting...
Gravity is, by far, one of the scientific themes that have most piqued the curiosity of scientists and philosophers over the centuries. From Aristotle to Einstein, from Hawking to now on, scientists have always put a creative effort to solve the main puzzles of the understanding of our universe: why do things move, the birth of the cosmos, dark matter, and dark energy are just a few examples...
We report a partial wave analysis conducted in $\tau^{-} \to \pi^{-}\pi^{-}\pi^{+}\nu$ decays, where it is expected that the new resonance $\text{a}_1(1420)$ that has been observed by COMPASS experiment can be studied as well as which provides the detailed study of $\text{a}_1(1260)$. In addition, we report the searches for New Physics in $\tau$ decays, especially with its decay involving...
We study a minimal model of pseudo-Dirac dark matter, interacting through transition electric and magnetic dipole moments. Motivated by the fact that xenon experiments can detect electrons down to ∼keV recoil energies, we consider O(keV) splittings between the mass eigenstates. We study the production of this dark matter candidate via the freeze-in mechanism. We discuss the direct detection...
The Compact Muon Solenoid (CMS) a general purpose experiment to explore the physics of the TeV scale in $pp$-collisions provided by the CERN LHC. Muons constitute an important signature of new physics and their detection, triggering, reconstruction and identification is guaranteed by various subdetectors using different detection systems: Drift Tubes (DT) and Resistive Plate Chambers (RPC) in...
The LHCb experiment is currently undergoing its Upgrade I, which will allow it to collect data at a five-times larger instantaneous luminosity. In a decade from now, the Upgrade II of LHCb will prepare the experiment to face another ten-fold increase in instantaneous luminosity. Such an increase in event complexity will pose unprecedented challenges to the online-trigger system, for which a...
In the past decade, antenna subtraction has been used to compute NNLO QCD corrections to a series of phenomenologically relevant processes. However, as for other subtraction schemes at NNLO, the application of this method proceeded in a process-dependent way, with each new calculation requiring a significant amount of work. In this talk we present an improved version of antenna subtraction...
Self-interaction of particulate dark matter may help thermalising the galactic center and driving core formation. The core radius is expectedly sensitive to the self-interaction strength of dark matter. In this work we study the feasibility of constraining dark matter self-interaction from the distribution of core radius in isolated haloes. We perform systematic $N$-body simulations of...
The leading-order (LO) hadronic vacuum polarization (HVP) contribution to the muon $g$-$2$, $a_{\mu}^{\rm HVP}(\rm LO)$, is traditionally computed via dispersive "time-like" integrals using measurements of the hadronic production cross-section in $e^{-}e^{+}$ annihilations. An alternative method is provided by lattice QCD. At LO, simple "space-like" formulas are well-known and form the basis...
The Circular Electron Positron Collider (CEPC) is designed to operate at center-of-mass energies of 240 GeV as a Higgs factory, as well as at the Z-pole and the WW production threshold for electroweak precision measurements and study of flavor physics. A good particle identification on charged hadrons is essential for the flavor physics and jet study. To meet this requirement, a tracker with a...
Motivated by results recently reported by the CMS Collaboration about an excess in the di-photon spectrum at about 96 GeV, especially when combined with another long-standing anomaly at the same value in the $b\bar b$ invariant mass spectrum in four-jet events collected at LEP, we show that a possible explanation to both phenomena can be found at 1$\sigma$ level in a generic 2-Higgs Doublet...
The Short Baseline Near Detector (SBND), a 112 ton liquid argon time projection chamber, is the near detector of the Short Baseline Neutrino program at Fermilab. SBND has the unique characteristic of being remarkably close (110 m) to the neutrino source and not perfectly aligned with the neutrino beamline, in such a way that the detector is traversed by neutrinos coming from different angles...
In 2016 INFN created a National Committee to coordinate third missione activities. One of its aim was to improve the quality of its local outreach activities. INFN results for VQR (the Italian national exercise to evaluate research quality)2011-2014 showed a clear difference in the quality of outreach activities organized by the Communication Office, and -despite the enthusiasm of the people...
Recently the muon collider has been recognised as an important option to be
considered for the future of particle physics.
It is part of the European Accelerator R&D Roadmap developed in 2021 and
approved by Council. Also interest is rising in the Amerikas and in Asia,
for example demonstrated by the ongoing Snowmass process.
The presentation will give an introduction into the muon...
We study scenarios where Dark Matter is a weakly interacting particle (WIMP) embedded in an ElectroWeak (EW) multiplet. In particular, we consider both real SU(2) representations with hypercharge $Y=0$, that automatically avoid direct detection constraints from tree-level $Z$-exchange, and complex ones with $Y\neq 0$. In the latter case, the minimal inelastic splitting between the DM and its...
The spontaneous muonium to antimuonium conversion is one of the interesting
charged lepton flavor violation processes. It serves as a clear indication of
new physics and plays an important role in constraining the parameter space
beyond Standard Model. MACE is a proposed experiment to probe such a phenomenon
and expected to enhance the sensitivity to the conversion probability by...
The LHCb experiments is in the commissioning phase of an ambitious upgrade project that will allow improved sensitivity to interesting beauty and charm decays with a combination of higher luminosity and the deployment of a purely software trigger. A key element of the trigger is a fast-tracking algorithm based on the vertex detector, and a tracking system located in front of the LHCb magnet,...
The energy dependency (running) of the strength of electromagnetic interactions $\alpha$ and of the mixing with weak interactions $\sin^2\theta_{\mathrm{W}}$ plays an important role in precision tests of the SM. The running of the former to the $Z$ pole is an input quantity for global electroweak fits, while the running of the mixing angle is susceptible to the effects of BSM physics,...
We present a reinterpretation study of existing results from the CMS Collaboration, specifically, searches for light BSM Higgs pairs produced in the chain decay $pp\to H_{\rm SM}\to hh(AA)$ into a variety of final states, in the context of the CP-conserving 2-Higgs Doublet Model (2HDM) Type-I. Through this, we test the LHC sensitivity to a possible new signature, $pp\to H_{SM}\to ZA\to ZZ h$,...
The Standard Model (SM) of particle physics is a very successful theory that can explain the fundamental particles and their interactions. However, there are theoretical, and experimental motivations of studying physics Beyond Standard Model. I will discuss the possibility of probing Beyond Standard Model physics through light particles like axions and light gauge bosons. We also obtain...
I will present our recent study of modeling uncertainties for fiducial signatures of the ttW process in the 3 lepton decay channel by comparing various approaches, such as full off-shell fixed-order NLO predictions and parton shower matched predictions based on on-shell ttW production. Finally, we provide a simple prescription to combine both approaches.
The exact computation of partition functions of four-dimensional theories with extended supersymmetry by means of localization techniques hinges on the existence of a Lagrangian description. On the one hand, it is known that in many cases such a description is only accurate in certain regions of moduli space, such as weak-coupling phases. On the other hand, there are also many examples of...
The ALICE Collaboration has just finished a major detector upgrade which increases the data-taking rate capability by two orders of magnitude and will allow to collect unprecedented data samples. For example, the analysis input for 1 month of Pb-Pb collisions amounts to about 5 PB. In order to enable analysis on such large data samples, the ALICE distributed infrastructure was revised and...
In Run 3 the LHCb experiment operates at an instantaneous luminosity a factor five higher compared to the previous runs, with sensitive parts of the upgraded detector as close as 5 mm to the beam. Hence, radiation and background levels should be carefully monitored to protect the experiment from effects ranging from poor data quality to instantaneous damage. To this end, LHCb is equipped with...
The muon anomaly, $a_\mu=(g_{\mu}-2)/2$, is a low-energy observable which can be both measured and computed to high precision, making it a sensitive test of the Standard Model and a probe for new physics. The current discrepancy between the Standard Model calculation from the Muon $g-2$ Theory Initiative [T. Aoyama et al. - Phys. Rept. 887 (2020), 1-166] and the experimental value is...
The latest results of searches for supersymmetry in hadronic and photonic final states with the CMS experiment will be presented. The analyses are based on the full dataset of proton-proton collisions collected during the Run 2 of the LHC at a center-of-mass energy of 13 TeV.
The ICARUS collaboration employed the 760-ton T600 detector in a successful three-year physics run at the underground LNGS laboratories studying neutrino oscillations with the CNGS neutrino beam from CERN, and searching for atmospheric neutrino interactions. ICARUS performed a sensitive search for LSND-like anomalous νe appearance in the CNGS beam, which contributed to the constraints on the...
The International Particle Physics Outreach Group (IPPOG) is a network of scientists, science educators and communication specialists working across the globe in informal science education and public engagement. The primary methodology adopted by IPPOG employs the direct involvement of scientists active in current research with education and communication specialists, in order to effectively...
The Circular Electron Positron Collider (CEPC) has been proposed as a Higgs/Z factory in China. The baseline design of a detector concept consists of a tracking system, which is a high precision (about 100 $\mu$m) large volume Time Projection Chamber as the main track device. The tracking system has high precision performance requirements, but without power-pulsing, which leads to additional...
In this talk we will talk about a large class of solvable lattice models, based on the data of conformal field theory. These models are constructed from any conformal field theory. The talk will be based on the results of a work titled “The crossing multiplier for solvable lattice models”. We consider the lattice models based on affine algebras described by Jimbo et al., for the affine...
The sPHENIX detector is a next generation experiment being constructed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Starting next year it will collect high statistics data sets from ultra relativistic Au+Au, p+p and p+Au collisions. The readout is a combination of triggered readout for calorimeters and streaming readout for the silicon pixel/strip detectors...
The large integrated luminosity accumulated by the ATLAS detector at the highest proton-proton collision energy provided by LHC allows the study of rare SM top quark production processes. The observation of associated production of top quarks has provided the first direct measurement of the top quark EW couplings with neutral gauge bosons and the first access to the four-top-quark interaction...
In this talk, I will present several possible anomaly-free implementations of the Branco-Grimus-Lavoura (BGL) model with two Higgs doublets and one singlet scalar. The model also includes three generations of massive neutrinos that get their mass via a type-I seesaw mechanism. A particular anomaly-free realization, which we dub νBGL-1 scenario, is subjected to a complete analysis, where valid...
The goal of the Short Baseline Neutrino (SBN) experiment at Fermilab is to confirm, or definitely rule out, the existence of sterile neutrinos at the eV$^2$ mass sc