During the last decade, CEA have started a long term program to achieve the collective realization of a large (32x32 pixels) µCalorimeters camera for X-ray Astrophysics. This camera is based on silicon doped sensors with Composite Tantalum absorber readout thanks to HEMT/SiGe based Cryo-Electronics. The goal of this development is to achieve a spectral resolution of about 2eV@6keV with a...
The SAFARI instrument is a diffraction grating and FTS spectrometer on board the SPICA space observatory, designed to achieve the highest-ever sensitivity for line emission in a wide far-infrared band. It will employ sensitive TES (Transition Edge Sensor) bolometer arrays with nearly 4000 pixels with an NEP of 0.2 aW/√Hz.
Frequency Division Multiplexing (FDM) will be used to read out these...
A tin cryogenic bolometer detector, TIN.TIN (The INdia based TIN detector), is being developed to study neutrinoless double beta decay in 124Sn [1]. The detector uses a NTD Ge sensor, cooled to 10 mK in a Cryogen Free Dilution Refrigerator [2]. The change in temperature of the absorber due to any incident photon/charged particle is detected by the sensor and the electrical signal is amplified...
JPL has developed a flexible radio-frequency readout system suitable for a variety of superconducting detectors commonly used in millimeter and sub-millimeter astrophysics, including Kinetic Inductance detectors (KIDs), Thermal KID bolometers (TKIDs), and Quantum Capacitance Detectors (QCDs). Our system avoids custom FPGA-based readouts in favor of commercially available software defined radio...
The 60 keV transition in Am-241 decay is one of the most important calibration standards for low energy gamma-rays. The current literature value of 59.5409(1) keV is based on measurements with high-purity Ge detectors and a Tb-161 reference source in 1993, and its 0.1 eV uncertainty gives it significant weight for cryogenic detector calibration. We have re-measured the energy of this...
The LUMINEU project has recently set up a technology for the development of high-performance radiopure 100Mo-containing scintillating bolometers, realized in the framework of the R&D activities towards the proposed tonne-scale neutrinoless double-beta decay experiment CUPID aiming at utilization of the existing CUORE infrastructure. Using in particular 100Mo-enriched Li2MoO4 cryogenic...
As the size and scale of low temperature detector arrays continue to grow, the demands on the cryogenic multiplexing has dramatically increased. The microwave SQUID multiplexer is meant to address this issue by opening the possibility of multiple gigahertz of readout bandwidth per coax pair. With this readout technique, complexity is moved from the cryogenic stages to the room temperature...
For high-energy particle detection, we investigated two materials: niobium and a high-temperature superconductor, YBa$_2$Cu$_3$O$_{7-\delta}$. Lumped element kinetic inductance detectors are fabricated with the both superconductors. The both devices detected the alpha line (5.4 MeV) radiated from $^{241}$Am source at 1 K. The energy resolution of the Nb-base detectors was approximately 0.6 MeV...
We report on a new development effort to achieve an array of ultra-sensitive (NEP < 1E-20 W/sqrt(Hz)) far-IR detectors for applications in spectrometers on Origins Space Telescope (OST) or similar low-background platforms. The detector uses a submicron-size hot-electron bolometer (HEB) sensor made from normal metal (non-superconducting Ti) coupled to a planar microantenna. The detector does...
The inductor of a microwave kinetic inductance (MKID) directly absorb the incoming photon, a microlens is used to focuses the light onto the inductor. Such an absorber suffers from a low absorption coefficient since most of the light is reflected on the superconductor metal. An anti-reflection layer can be used to lower the reflectance of the surface by creating destructive interference for...
Neutrinos play a crucial role in the Standard Model of particle physics, but also in Astrophysics.
The evolution of a massive star strongly depends on the properties of these particles, especially in Supernova explosions. On this subject very few information are available concerning their production, absorption, and scattering processes and elementary aspects of neutrino transport in dense...
Superconducting-insulating-superconducting (SIS) trilayers have been produced for Josephson Junction fabrication by thermal atomic layer deposition (ALD) processes. The trilayers are composed of alternating layers of Ti0.4N0.6/Al2O3/ Ti0.4N0.6, deposited at 450°C, in a thermal ALD reactor on Al2O3-coated silicon. The conformal nature of the ALD process provides excellent step coverage of...
Niobium nitride (NbN) is a useful material for fabricating detectors because of its high critical temperature and relatively high kinetic inductance. In particular, NbN can be used to fabricate nanowire detectors and mm-wave transmission lines. When deposited, NbN is usually sputtered, leaving room for concern about uniformity at small thicknesses. We present Atomic Layer Deposition niobium...
Future x-ray astrophysics experiments require high-fill-factor kilo-pixel arrays of transition-edge sensors (TESs), with very high spectral resolution over a broad range of energies (typically 0.1-12 keV). In this paper we report on Mo/Au TES designs that are being optimized to meet the stringent resolution, count-rate and uniformity requirements of this next generation of space-based...
CCAT-prime is a new 6 m crossed Dragone telescope designed to characterize the Cosmic Microwave Background (CMB) polarization and foregrounds, measure the Sunyaev-Zel’dovich effects of galaxy clusters, map the [CII] emission intensity from the Epoch of Reionization (EoR), and probe star formation and the dynamics of the interstellar medium in Milky Way and nearby galaxies. CCAT-prime will make...
Transition Edge Sensors (TESs) are used as very sensitive thermometers in microcalorimeters aimed at different wavelengths detection. In particular, for soft X-ray astrophysics, science goals require very high resolution microcalorimeters which can be achieved with TESs coupled to suitable absorbers. For many applications there is also need for a high number of pixels which need to be...
Advanced ACTPol is the second generation polarization-sensitive upgrade to the 6m aperture Atacama Cosmology Telescope (ACT), which increased detector count and frequency coverage compared to the previous ACTPol receiver. Advanced ACTpol utilizes a new two-stage time-division multiplexing readout architecture based on superconducting quantum interference devices (SQUIDs) to achieve a...
The Simons Observatory is building both large (6m) and small (0.42m) aperture telescopes in the Atacama desert in Chile to observe the cosmic microwave background (CMB) radiation with unprecedented sensitivity. Simons Observatory telescopes in total will use over 60,000 transition edge sensor (TES) detectors spanning frequencies between 27 and 270 GHz and operating near 100mK.
TES devices have...
X-ray emission from charge exchange between highly-charged ions and neutral atoms forms a significant portion of the emissions from galactic outflows and stellar winds and is an important source of soft X-ray emission in our Solar system. Theoretical modeling of the velocity-dependent partial cross sections for X-ray line emission in charge exchange has so far proven difficult. High-resolution...
Implemented at nuclear facilities, ultra-high-resolution microcalorimeter gamma spectroscopy offers important capabilities for advanced nuclear fuel cycle safeguards. Our goal is to reduce the performance gap between nondestructive and destructive isotopic analysis methods. The improved energy resolution of microcalorimeters can reduce uncertainty in nondestructive isotopic composition...
The technology for low-power sub-Kelvin cooling is is now established and products are available that offer simple operation, with reliable and repeatable performance at relatively low cost. Self-contained, sealed sub-Kelvin modules can be added-on or retro-fitted to low-power mechanical (GM or PT) pre-coolers to extend their operating temperature downwards, from 4K into the sub-Kelvin range....
For astronomical instruments, accurate knowledge of the optical pointing and coupling are essential to crosscheck or characterize the alignment and performance of (sub-)systems prior to integration and deployment. The standard technique for this purpose with phase-sensitive heterodyne spectrometer instruments is the complex beam pattern, which describes both the amplitude and phase response of...
Optical transition edge sensor (TES) detectors which can resolve an energy of a single optical photon have proven desirable in quantum information and biological imaging. Optical TESs were designed to have a high detection efficiency at a specific wavelength and has achieved nearly 100 % at the wavelength. They have been proven to have the sensitivity at a wide bandwidth from near-infrared to...
The cryogenic systems is becoming vital in R&D activities in many fields ranging from cooled detector integrated electronics to quantum computing systems. Although CMOS technology has been widely studied, current models do not consider transistor behavior at ultra-low temperatures. Developing the necessary instrumentation to characterize transistor structures fabricated in CMOS commercial...
We have been developing position-sensitive detectors, most recently for the proposed Lynx X-ray observatory currently under study for the next 2020 decadal survey. These detectors, referred to as hydras, are composed of multiple absorbers connected to a single transition-edge sensor (TES), each with a different thermal conductance. Using this technique as a form of thermal multiplexing allows...
Direct-current superconducting quantum interference devices (dc-SQUIDs) are among the most sensitive wideband devices for measuring any physical quantity that can be naturally converted into magnetic flux. Therefore, they are ideally suited, for example, for reading out cryogenic particle detectors such as transition edge sensors or metallic magnetic calorimeters. However, SQUIDs are...
LiteBIRD is a proposed JAXA satellite mission to measure the CMB B-mode polarization with unprecedented sensitivity ($\sigma_r \sim 0.001$). To achieve this goal, $\sim 4000$ state-of-the-art TES bolometers will observe the whole sky for 3 years from L2. These detectors, as well as the SQUID readout, are extremely susceptible to EMI and other instrumental disturbances e.g. static magnetic...
Silicon bolometers feature a remarkably high sensitivity when cooled at very low. These devices can be used as polarization sensitive detectors in the field of millimetre-wave radiation imaging and polarimetry, typically in the range 200 to 500 GHz. The radiation absorption is based on Ti/TiN superconducting thin films with an adapted critical superconducting transition temperature (Tc) for...
The DESHIMA instrument is a wideband submillimeter spectrometer based on a single NbTiN superconducting chip, which is integrated with a dispersive filterbank and Microwave Kinetic Inductance Detectors (MKIDs) sensor array. For the next campaign at the ASTE telescope in Chile, DESHIMA is expected to have an instantaneous bandwidth from 220-440 GHz with 347 channels, achieving a resolution...
The response of high-resolution detectors to a short-pulse laser consists of a set of equidistant peaks corresponding to integer numbers of absorbed photons that follow Poisson statistics. Since the laser has a negligible intrinsic line width, the peaks can be used for detailed characterization of the detector and the data acquisition system. We have characterized superconducting tunnel...
LiteBIRD is a satellite mission designed to measure the polarization of the cosmic microwave background and cosmic foregrounds from 34 to 448 GHz. This experiment aims to measure primordially generated B-mode polarization at large angular scales and will generate a dataset capable of probing many scientific inquiries such as the sum of neutrino masses. The experiment will have three optical...
Micro-X is a sounding rocket borne instrument that uses a Transition Edge Sensor microcalorimeter array to perform high-resolution spectroscopy in the X-ray band. This instrument flew for the first time on July 22nd, 2018 from White Sands, New Mexico. An internal calibration source is used to compare data taken during pre-flight integration, flight, and after the successful post-flight...
We estimate the depairing current of superconducting nanowire single-photon detectors$^1$ (SNSPDs) by studying the dependence of the kinetic inductance on the bias current. The kinetic inductance is determined by measuring the microwave resonance frequency of resonator-style nanowires$^2$. Bias current dependent shifts in the measured resonant frequency correspond to a change in the kinetic...
TolTEC is an upcoming multiwavelength imaging polarimeter designed to fill the focal plane of the 50-m diameter Large Millimeter Telescope (LMT). Combined with the LMT, TolTEC will offer high angular resolution (5”-10”) simultaneous, polarization-sensitive observations in three wavelengths: 1.1, 1.4, and 2.0 mm. Additionally, TolTEC will feature mapping speeds greater than 2...
Broadband imaging spectrometers are playing an increasingly important role in terahertz astronomy. As is well known, microwave kinetic inductance detectors (MKIDs) use frequency-domain multiplexing (FDM) that allows thousands of pixels to be read out through a single coaxial transmission line. Based on Al MKIDs incorporating a Nb/SiO2/Nb thin-film microstrip-line filter bank, we are developing...
The forthcoming generation of Cosmic Microwave Background polarization observatories are developing large format detector arrays which will operate at 100 mK. Given the volume of detector wafers that will be required, fast-cooldown 100 mK test cryostats are increasingly needed. A miniature dilution refrigerator (MDR) has been developed for this purpose and is reported. The MDR is pre-cooled by...
New fully integrated digital signal processing technology called Radio
Frequency System on a Chip (RFSoC) developed for communications and
defense applications will set the standard for future astronomical
instruments which utilize superconducting arrays of kinetic inductance
detectors (KID), Transition edge sensors (TES), and nanowire single
photon detectors (SNSPD). The RFSoC combines a...
Athena is a future X-ray observatory led by ESA, to be launched in the early 2030s. The X-ray Integral Field Unit (X-IFU) instrument on-board Athena provides spatially-resolved high resolution spectroscopy of 2.5 eV with a large array of Transition Edge Sensor (TES) microcalorimeters. The main sensor is a MoAu bi-layer TES array provided by NASA-Goddard. Pixels are read out with a...
High-resolution X-ray emission spectroscopy (XES) can offer element-specific insight into the oxidation state and chemical environment of a compound through energy shifts in emission peaks and their minor satellites. Compared to X-ray absorption spectroscopy, emission spectroscopy is less developed from both a theoretical and practical standpoint, and the ≲ 1 eV shifts demand detectors with...
We are developing Position-Sensitive Transition-edge sensor (TES) microcalorimeters (PoSTs) to detect gamma-rays up to a few MeV. Each PoST consists of a long absorber with a TES on each end of the absorber and works as a one-dimensional imaging spectrometer. We fabricated PoSTs with 0.5 mm x 0.5 mm x 18.8 mm lead absorbers and TESs with transition temperature of 171 mK. We irradiated the...
We are challenging to measure gamma rays in the high energy band of 200 keV-2 MeV.For this purpose, our gamma-ray transition-edge-sensor (TES) microcalorimeters have a large absorber (1mm×1mm×1mm). For mechanical robustness and fast decay time, the membrane of our gamma-ray TES microcalorimeters are made of silicon and at present ten times thicker than those of X-ray TES microcalorimeters....
We developed a 5x5x5 mm3 crystal detector with an MMC readout. The detector was designed to achieve low energy threshold for direct detection of low mass dark matter. A pure CaF2 crystal was adopted as a target. This absorber crystal had a strong thermal contact to a metallic magnetic calorimeter (MMC) sensor via thin gold film evaporated on its surface. The MMC sensor and the gold film were...
LiteBIRD is a cosmic microwave background polarization experiment with the goal of measuring the tensor-to-scalar ratio with a total uncertainty of $\delta r$ < 0.001. It will survey the full sky for three years in 15 frequency bands spanning 34 to 448 GHz. We are developing detector arrays for the six lowest frequency bands, 34 to 99 GHz. The arrays are populated with lenslet-coupled sinuous...
The Electron Capture in $^{163}$Ho (ECHo) collaboration plans to reach sub-eV sensitivity level on the effective electron neutrino mass by the analysis of a high energy resolution and high statistics electron capture spectrum of $^{163}$Ho. Large arrays, of the order of 100 pixels each, of metallic magnetic calorimeters (MMCs) with enclosed $^{163}$Ho, read out utilizing microwave SQUID...
We have developed Microwave Kinetic Inductance Detectors suitable for near-IR single photon counting. Our films are made of titanium and titanium nitride, deposited in a multi-layer structure Ti/TiN/Ti/TiN with a total thickness of 44 nm. The film has a transition temperature of 1.2 K and a surface kinetic inductance of 34 pH/sq. The resonator was designed with lumped elements and consists of...
In the search for rare events, a simultaneous measurement of photons and phonons produced after an event in a scintillating crystal operated at mK temperatures enables an efficient background rejection. This is due to the fact that the light yield depends on the mass, allowing for particle discrimination. This approach can be used for both neutrinoless double beta decay and dark matter...
We report on the recent progress in Neganov–Luke light detector (NLLD) development. The electrodes to generate electric field for Neganov-Luke phonon amplification is configured in a pair of comb-shaped Al electrodes fabricated on one side of a silicon wafer served as a light absorber. A metallic magnetic calorimeter (MMC) is adopted to measure the temperature increase of the absorber wafer....
The BICEP/Keck (BK) experiment aims to detect the imprint of primordial
gravitational waves in the Cosmic Microwave Background polarization,
which would be direct evidence of the inflation theory. While the
tensor-to-scalar ratio r has been constrained to be <0.06 at 95% c.l.,
further improvements on this upper limit are hindered by polarized
Galactic foreground emissions. The 30/40 GHz...
We are currently building a transition-edge sensor (TES) X-ray spectrometer for the Advanced Photon Source at Argonne National Laboratory for energies less than 20 keV in collaboration with National Institute of Standards and Technology (NIST). The spectrometer consists of application specific TES sensors for pilot X-ray emission spectroscopy (XES) and X-ray absorption fine structure (XAFS)...
Despite the multiple and convincing evidences of the existence of Dark Matter (DM) in our Universe, its identification is one of the most pressing questions in particle physics. As of today there is no unambiguous hint which could clarify its particle nature. For these reasons, a huge experimental effort is ongoing, trying to realise experiments which can probe different DM properties. In...
We propose to use high-purity lab-grown diamond for the detection of sub-GeV dark matter. Diamond targets can be sensitive to both nuclear and electron recoils from dark matter scattering in the MeV and above mass range, as well as to absorption processes of dark matter with masses between sub-eV to 10's of eV.
Compared to other proposed semiconducting targets such as germanium and silicon,...
Low-temperature calorimeters (or phonon detectors) have proven to be great detectors to search for rare processes like neutrinoless double beta decay and dark matter interactions. While the massive calorimeters used in the aforementioned searches can achieve excellent energy resolution, their sensitivity is limited by the background radioactivity. One technique to enable event-by-event...
Microwave multiplexing has become a key technology for reading out large arrays of x-ray and gamma ray microcalorimeters with mux factors of 100 or more. However, the desire for large mux factors and fast x-ray pulses for high photon counting rates drives system design towards high sensor current slew rate, which is typically handled by using a high sampling rate. Future experiments like the...
The Galaxy Evolution Probe (GEP) is a concept for a NASA Astrophysics Probe-class space observatory to study the physical processes that have influenced galaxy evolution over cosmic time. This requires surveys of the mid- and far-infrared (IR) spectra of galaxies over a broad range of redshifts and cosmic environments. These mid and far-IR observations require large multi-frequency arrays of...
The high spectral resolution detection of hard X-rays (E > 20 keV) is a challenging and nearly unexplored area in Space Astrophysics.
Traditionally used CdTe/CdZnTe semiconductor based hard x-ray detectors present moderate spectral resolution (several hundred eV @ 60 keV), while a resolution of few tens of eV could open new frontiers in the study of nuclear processes and high temperature...
Absorber is a key element for superconducting transition edge X-ray detectors. We fabricated thick gold absorber with an overhanging structure. A Ti/Au seed layer was made by magnetron-sputtering deposition, and then several micrometers-thick gold absorber was made by electroplating. The resistivity of the gold absorber was determined from four-terminal measurements. The absorber was...
We have been developing Superconductor-Insulator-Superconductor (SIS) mixer integrated circuits (ICs) for highly compact multi-beam heterodyne receivers. The distinctive feature of the SIS mixer ICs is the incorporation of membrane-supported waveguide probes for signal and local oscillator coupling. This idea makes it possible to compactly accommodate many pixels on the focal plane and to...
Photon counting detectors for terahertz frequencies will open new frontiers in terahertz astronomy by measuring photon statistics and applying to intensity interferometry. To count large number of terahertz photons, we work on SIS (or STJ) photon detectors. In this presentation we discuss the readout cryogenic electronics with GHz bandwidth made of semiconductor circuits for the SIS photon...
Many applications in astronomy from tens of GHz to THz frequencies, such as CMB polarization studies and Sunyaev-Zeldovich effect observations, would benefit from low loss and wide bandwidth optics. Silicon is an excellent material for optics within this frequency range because of its high refractive index, achromaticity, lack of birefringence, low loss, high thermal conductivity, and...
SuperSpec is an on-chip filter-bank spectrometer designed for wideband moderate-resolution spectroscopy at millimeter and submillimeter wavelengths, employing TiN kinetic inductance detectors. SuperSpec technology will enable integral-field-unit spectrometers suitable for high-redshift line intensity mapping or multi-object spectrographs. We plan to deploy a demonstration instrument to the...
For quasi-optical elements in the millimeter and sub- millimeter range, silicon is an interesting material. Its high refractive index facilitates the production of compact and lightweight elements. Moreover, its thermal conductivity allows better thermalisation at cryogenic temperatures, and the loss tangent of bulk high-resistivity silicon (tan δ < 10- 4) is without competition.
Silicon is...
We present HeRALD (Helium Roton Apparatus for Light Dark matter), a new detector concept using superfluid helium as the target material for sub GeV dark matter nuclear recoil. Helium, in its superfluid state, promises a good kinematic matching to low mass dark matter with several channels for reading out nuclear recoils. The main idea of this detector design is that superfluid helium allows...
A novel triggering function developed for 240 pixel Transition-Edge Sensors is demonstrated under the high rate of particle background. The function is integrated into the standard data acquisition system in the NIST TES framework. It enables any type of combination of trigger pattern when a pixel is triggered, which is called ``group trigger''. As a practical implementation, the primary...
Large spectro-imagers for X-ray astronomy are highly needed. Consisting in micro-calorimeter arrays, technologies used for thermometers are based either on superconductor (TES) or metal-insulator (MIS, or Si-doped sensors) transitions. MIS are a good choice for their easy operability with classical electronics. TES allow high sensibilities detectors for the price of a complex multiplexing...
The signal digitization for CROSS, a bolometric experiment searching for neutrinoless double beta decay at LSC (Canfranc Underground Laboratory), will be based on a custom solution comprised of an analog-to-digital board interfaced to an Altera Cyclone V FPGA module. Each analog-to-digital board hosts 12 channels that allow data digitization up to 25 ksps per channel and an effective...
In this proceeding we will describe the effort made in our group to address the problem of the beam characterization of a small aperture telescope with wide field of view in the microwave band between 90 and 300GHz. We will describe the case of Transition Edge Sensors (TES), baseline choice for upcoming ground Cosmic Microwave Background (CMB) experiments such as the Small Aperture Telescope...
In China, HUBS is being proposed as a major X-ray mission for the next decade. It is designed to effectively probe hot gas in the circumgalactic and intergalactic space and thus to address the long-standing issue of "missing" baryons in the local universe. The hot gas is expected to produce only weak emission in soft X-rays, due to its low density, making it technically difficult to detect. On...
We discuss the improvements in wide energy range, energy dispersive X-ray emission spectroscopy in the particle induced mode (PIXE) achieved by optical focusing of X-rays to high-energy resolution superconducting transition-edge sensor arrays. TES-PIXE technique offers great energy resolution for multi-element samples consisting of even hundreds of X-ray peaks with nearly overlapping energies...
We present an interdigitated capacitor trimming technique for fine-tuning the resonance frequency of superconducting microresonators and increasing the multiplexing factor. We first measure the optical response of the array with a beam mapping system to link all resonances to their physical resonators. Then a new set of resonance frequencies with uniform spacing and higher multiplexing factor...
Narrowband parametric amplifiers with superconducting (SC) thin films on planar transmission lines have been realised by numerous groups. These paramps rely on resonators with non-linear elements within them to allow for harmonic generation that gives rise to signal gain when certain conditions are satisfied. Such params, however, have not yet been realised in SC circular and rectangular...
Intensive submm-wave continuum imaging of the sky has discovered several high-redshift ultra-luminous infrared galaxies (ULIRGs), and follow up spectroscopic measurements have partially resolved their redshift distribution. But much of the dust-obscured galaxy formation in the early universe is traced by much less bright infrared galaxies, which are hard to detect using classical imaging...
Future low mass Dark Matter searches will require sensitivity to single optical phonons, corresponding to thresholds of about 100meV. This motivates the design of sensors with relatively large areas, and excellent energy resolution.
In this talk I will discuss the performance of a $100\mu\mathrm{m}\times 400\mu\mathrm{m}$ Tungsten Transition Edge Sensor (TES) with a $T_c$ of 40mK. This device...
In dark matter direct-detection experiments, the detection limits of most detectors are confined with the backgrounds originating from coherent neutrino-nucleus scattering. One of the possible methods to break the neutrino background floor is a use of the directional dependence of detector response. We employed ZnWO4 crystals as an anisotropic target material for the simultaneous detection of...
The International Axion Observatory (IAXO) is searching for axions or axion-like particles generated in the Sun. A large magnetic field is used to convert solar axions to photons via the Primakoff effect. The major part of the expected spectrum considering only axion-photon coupling covers an energy range up to 10 keV with its maximum at about 3 keV. X-ray detectors with high efficiency in...
The µ-Spec integrated spectrometer operating at ~500 GHz, employs thin film superconducting Nb microstrip transmission lines deposited directly on a thin (450 nm) single-crystal silicon dielectric. This single-crystal silicon layer is chosen as the dielectric layer due to its low intrinsic loss, with the goal of achieving both high-efficiency and precise phase control in a compact spectrometer...
CUORE (Cryogenic Underground Observatory for Rare Events) is a tonne-scale cryogenic detector located at the Laboratori Nazionali del Gran Sasso exploiting bolometric technique to search for neutrinoless double beta decay of 130Te. The experimental signature is a sharp peak at the Q value of the decay in the summed energy spectrum of the electrons emitted.
Thanks to its very low background and...
Transmission line losses at sub-mm wavelengths present a significant challenge for highly integrated superconducting circuits, such as on-chip spectrometers, multi-color/dual polarization detectors for measurements of the CMB or phased array antennas. In the case of on-chip spectrometers like DESHIMA or SuperSpec, an internal loss better than $\tan^{-1}\delta = Qi \sim 10^4$ is required to...
Accurate decay data on radioactive nuclides are necessary for many fields of science and technology, ranging from medicine and particle physics to metrology. However, data that are in use today are mostly based on measurements or theoretical calculations that are rather old. Recent measurements with cryogenic detectors and other methods show in some cases significant discrepancies to both...
Heavy ion beam is used in radiotherapy for cancer. Unlike in other radiation therapies, direct ionization plays a large roll in heavy ion therapy. It is considered that the secondary electrons emitted in the minute area around the track of a heavy ion beam plays a roll in the direct ionization, which has not been quantitatively evaluated yet. In order to ultimately detect the energy transfer...
HOLMES is an experiment aiming at pushing down the sensitivity on the smallest neutrino mass at the order of ∼ eV performing a calorimetric measurement of the Electron Capture decay spectrum of 163Ho. For reaching its goal, HOLMES will deploy an array of 1000 microcalorimeters based on Transition Edge Sensors with gold absorbers in which the 163Ho will be ion implanted. A major challenge is...
Optical Transition Edge Sensor (TES) detectors are highly desirable for two-dimensional single-photon multi-color imaging, especially in biology. Recently, we have demonstrated the single photon spectroscopic imaging with an optical TES [1]. It takes 20 to 40 minutes to obtain an image. To decrease the measurement time, multi-pixel detectors are necessary. A Microwave SQUID Multiplexer...
We developed metal magnetic calorimeters (MMCs) having a critical temperature switch to inject a persistent current on the integrated planar Nb coil. A part of the Nb superconducting loop was fabricated with an alloy of 38% Nb and 62% Ta concentration. The NbTa switch showed a clear superconducting transition at 5.29 K. Persistent currents as large as 120 mA were successfully charged with the...
The MOCCA detector is a high-resolution, large-area molecule camera based on metallic magnetic calorimeters and read out with SQUIDs. Its array of 64 × 64 quadratic pixels with a side length of 700µm covers a total detection area of over 4.5cm × 4.5cm with a filling factor of 99.5%. It will be deployed at the Cryogenic Storage Ring CSR at the Max Planck Institute for Nuclear Physics in...
Future instruments employing cryogenic detectors for millimeter and submillimeter astronomy applications can benefit greatly from silicon vacuum windows with broadband antireflection treatment. Silicon is an ideal optical material at these wavelengths due to numerous attractive properties, including low loss, high refractive index, and high strength. However, its high index ($n=3.4$)...
Nanoscale phononic crystals (PnC) are promising components for several low temperature detector technologies, such as bolometers, transition edge sensors and kinetic inductance detectors (KID). Recent experimental and theoretical studies demonstrate a wide range of tunability for thermal properties of PnCs with correctly chosen geometry. [1-2] Low temperature applications of PnCs often rely on...
We report on the development of near-IR and optical parallel plate capacitor lumped-element kinetic inductance detectors (LEKIDs) for astronomical applications. The parallel-plate capacitor is made of a TiN base electrode, Al2O3 dielectric and Nb upper electrode. For a given frequency readout bandwidth, compared to the interdigitated capacitor geometry, the use of the parallel-plate capacitor...
The search for dark matter candidates using solid crystals operated at cryogenic temperatures, push towards a lower energy threshold at each development stages for the detectors. Consequently, new approaches for detector calibration at the proposed energy scales are necessary. In the case of SuperCDMS SNOLAB, energy thresholds in the range of few eVs are expected. In this talk, we are...
The Northwestern EXperimental Underground Site at Fermilab (NEXUS@FNAL) is an underground cryogenic facility that has 300 meter water equivalent shielding. A dilution refrigerator operating at 10 mK, a DD generator producing 2.5 MeV neutrons, and a suite of optical and X-ray calibration sources are being deployed at the facility. The expected background level at NEXUS is 100 events/keV/kg/day....
CUORE is a ton-scale underground array of $988$ $\mathrm{TeO}_2$ crystals operated as bolometers at about $10 \: \mathrm{mK}$ in the INFN Gran Sasso National Laboratories (LNGS). Its main scientific goal is searching for $0\nu\beta\beta$ decay of $^{130}\mathrm{Te}$. Each crystal is equipped with an NTD thermistor whose voltage is low-pass filtered, amplified and continuously digitized at a...
SPICA is one of the three projects competing for the ESA M5 mission. The three SPICA instruments share the focal plane of a 2.5 m diameter telescope cooled to 8 K, to achieve ultimate sensitivity measurements in the Far-IR and submm domains. The B-BOP camera, one of these instruments with unprecedented polarimetric capabilities, is mainly devoted to reveal the role of magnetic field in many...
We have prepared superconducting niobium nitride (NbN) films and NbN/AlN/NbN tunnel junctions to investigate the energy gaps by measuring the optical conductivity with time-domain terahertz spectroscopy and by tunneling spectroscopy, respectively. A 41-nm-thick NbN film was deposited on a 0.3-mm-thick single crystal MgO substrate by reactive dc magnetron sputtering. The critical temperature...
The BICEP/Keck experiment (BK) is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background (CMB) polarization from the South Pole in search of a primordial B-mode signature. This B-mode signal arises from inflationary gravitational waves interacting with the CMB, and has amplitude parametrized by the tensor-to-scalar ratio $r$. Since 2016, BICEP3...
Astronomy and astrophysics have been continuously seeking observing capabilities with higher angular resolution and better sensitivity. Fast photon detection would be one of the key technologies to advance the detector performance, which may improve the signal-to-noise ratio by resolving each photons, or may lead to photon statistics for high precision measurements in photon-counting mode. SIS...
The SuperCDMS collaboration has entered the construction phase for the upcoming SuperCDMS SNOLAB experiment. By 2025 we will probe nuclear-recoil dark matter between 300 MeV and 10 GeV and electron recoil dark matter down to 500 keV with world-leading sensitivity. I will review the status and plans for the SuperCDMS SNOLAB experiment, and discuss recent science results from surface dark matter...
Frequency division multiplexing (FDM) is a readout technique for transition edge sensor-based bolometer arrays used on telescopes including SPT-3G, POLARBEAR-2, and LiteBIRD. Here we present the latest progress and plans for development of a minimal-parasitic FDM architecture. This technology will enable ultra-large focal planes for future instruments such as CMB-S4. Reduced wiring length...
From extremely broadband functionality to easily scalable designs, self-similar antennas offer a strong set of benefits. With a four-arm layout, self-similar designs also become geometrically suited for dual-polarization through excitations of opposing arms. However, there has only been limited use of these devices for millimeter-wave detectors. One field for such antennas is the Cosmic...
Calorimetry of the absorbed energy in heavy ion is very effective for minimizing of the uncertainty in dose rate measurement. Therefore we have been developing the precision heavy charged particle detector applying the superconducting transition edge sensor (TES) coupled to a tin absorber. In LTD 17, we reported our first experimental result, in which we succeeded to detect the helium ions at...
MetroBeta is a European metrology research project aiming at the improvement of the knowledge of the shapes of beta spectra, both in terms of theoretical calculation and measurement. The most prominent experimental work package deals with the measurement of the spectrum shapes of several beta emitters by means of metallic magnetic calorimeters (MMCs) with the beta emitter embedded in the...
We are developing new focal plane arrangements of x-ray microcalorimeters to meet the needs of future instruments for x-ray astrophysics. The prototype focal plane for Lynx, a mission concept for an x-ray telescope, requires the flexibility to image large areas with moderate resolution across the 6 keV x-ray band while also imaging point sources with very high resolution for soft x-rays. ...
Superconducting Quantum Interference Devices (SQUIDs) are used as the standard first-stage amplifier for the readout of cryogenic TES-based detector arrays, and multiplexing techniques are used to minimise the heat loads and complexity of TES readout systems. Frequency domain multiplexing is the baseline for the readout of an imaging array of TES-based microcalorimeters the X-IFU instrument...
Kinetic Inductance Detectors (KIDs) were born as superconducting detectors for electromagnetic radiation. Thanks to their excellent energy resolution, to the simple sensor design and fabrication and to the ease of multiplexing, these detectors suddenly became object of several R&D projects in different physics fields. However, in most applications the KID sensitivity is ultimately limited by...
In this contribution we present the Q&U Bolometric Interferometer for Cosmology (QUBIC) experiment. QUBIC is an experiment devoted to the observations of the polarization of the Cosmic Microwave Background radiation with the goal to detect the signature of the Inflationary expansion of the Universe in its very early phase. QUBIC (an international collaboration between laboratories in France,...
Cosmic microwave background (CMB) measurements are fundamentally limited by photon statistics. Therefore, ground-based CMB observatories have been increasing the number of detectors that are simultaneously looking at the sky. Thanks to the advent of monolithically fabricated transition edge sensor (TES) arrays, the number of on-sky detectors has been increasing exponentially for over a decade....
Scintillating bolometers have traditionally employed phonon and photon readout to identify particle types from the ratio of the two signals. In addition, different phonon pulse shapes of electron and nuclear recoils have been observed, but improvements in particle discrimination have been focused on improved light collection or sensitivity. Here we show that observed pulse shape differences in...
AMoRE (Advanced Mo-based Rare process Experiment) is a large-scale low temperature detector to search for neutrinoless double beta decay (0νββ) of 100Mo. The project employs MMC readouts for simultaneous phonon-scintillation detection from scintillating crystals containing 100Mo elements. Because heat capacities of the detector components and MMC sensitivity vary with temperature, signal...
The low-mass frontier of Dark Matter, the measurement of the neutrino mass, the search for new light bosons in laboratory experiments, all require detectors sensitive to excitations of meV or smaller. Faint and rare signals, such as those produced by vacuum photoemission or by an Axion in a magnetic field, could be efficiently detected only by a new class of sensors.
The Italian Institute of...
SuperCDMS has been pursing R&D on a new style of detector (HVeV) that has already demonstrated single electron-hole pair discrimination. We have recently produced a second detector which has achieved 0.06 electron-hole pair resolution in Silicon, a record charge resolution for a gram-scale calorimeter. Using a contact-free biasing scheme, this detector has attained 3 eV phonon energy...
The SuperCDMS collaboration has been developing cryogenic silicon and germanium detectors optimized for phonon signals from dark matter-nucleus collisions. The detectors are sensitive to dark matter masses between about 1 and 10 GeV/c^2, which corresponds to sub-keV energy deposits from the nuclear recoil signal. The sensitivity of a SuperCDMS high voltage detector is achieved by applying a...
Non-equilibrium quasiparticles can deteriorate the performance of superconducting qubits and Kinetic Inductance Detectors. The former suffer from the loss of coherence, while the latter from low-frequency noise. We are investigating a source of quasiparticles that has been too long neglected, namely radioactivity: cosmic rays, environmental radioactivity, and contaminants in the materials can...
We have developed a new transition edge sensor (TES) material with transition temperature in the range 100-200mK. The new material is a solid solution of two superconducting components, MoxNb1-x, co-sputtered from two high-purity single-component targets (Mo and Nb) . The transition temperature, Tc, has a minimum (dTc/dx=0) at intermediate concentration of the components. We have optimized...
An experiment to search for neutrinoless double beta decay in $^{124}$Sn has been initiated in India [1]. It is envisaged to use a superconducting tin-based cryogenic bolometer (TIN.TIN) operating at $\sim$10 mK for this purpose. It is important to study various systematics related to the cryogenic bolometer with a relatively simpler and well-studied absorber material before making a...
Cryogenic sensor arrays for the next generation of scientific applications require more pixels and higher multiplexing factors. In recent years, microwave SQUID multiplexing ($\mu$mux) has emerged as a promising candidate for achieving large multiplexing factors with low readout noise penalty while reducing integration complexity and readout cost per sensor. In $\mu$mux, the current from each...
QUBIC is a ground based projet aiming to measure of the B-mode polarisation of the Cosmological Microwave Background. The instrument consists of a 300mK bolometric interferometer based on a 1000 pixel TES sensor technology. In this paper we describe in detail the fabrication process of the detector arrays and their integration into the QUBIC cryostat.
The Any Light Particle Search II (ALPS II) is an experiment at DESY, Hamburg that utilizes the concept of resonance enhancement to improve on the sensitivity of traditional light shining through a wall style experiments. Such experiments attempt to detect photons passing through an opaque, light-tight barrier by converting to relativistic, weakly interacting sub-eV particles and then...
The PTOLEMY project [1] is devoted to directly detect the Cosmic Neutrino Background (CNB). A key element of the project is the ability to detect few eV electrons with an energy resolution lower than 0.05 eV. Microcalorimeters based on transition-edge sensors (TES) are among the best candidates since they already reach 0.11 eV of energy resolution for telecomm photons [2]. To further increase...
The advanced Mo-based rare-process experiment (AMoRE) is an underground cryogenic particle detection experiment to search for neutrinoless double beta decay of 100Mo. The experiment uses scintillating crystals composed of enriched 100Mo isotopes as the target material for simultaneous detection of phonon and scintillation signals with MMC readouts at millikelvin temperatures. As a pilot stage...
The X-ray Integral Field Unit (X-IFU) is the X-ray microcalorimeter instrument on board the Advanced Telescope for High-ENergy Astrophysics (Athena). The X-IFU will provide spatially resolved high-resolution spectroscopy from 0.2 to 12 keV. The instrument has undergone successfully its Preliminary Requirement Review, demonstrating the feasibility of an instrument that will meet the scientific...
We report on a dichroic (150/220 GHz) detector array for the Cosmology Large Angular Scale Surveyor (CLASS). The array is currently being deployed in a new CLASS telescope that will provide sensitivity to the polarized cosmic microwave background (CMB) and dust emission. In concert with existing 40 and 90 GHz telescopes, the 150/220 GHz observations over large angular scales with...
CMB-S4 is a next generation CMB experiment and is a major focus of the ground based CMB community. Three key science goals driving the technical requirements for CMB-S4 are: 1) searching for primordial gravitational waves resulting from an early period of accelerated expansion (inflation), 2) searching for new light relic particles in the early universe, and 3) providing a legacy survey of...
Neutrinoless double-beta decay is a hypothetical rare nuclear transition (T1/2>1026 yr) and its observation would imply lepton number violation and Majorana nature of neutrinos (ν ̅=ν), allowing to determine the absolute scale of the neutrino mass and to probe effects beyond the Standard Model. In this transition two neutrons decay simultaneously into two protons and two electrons. This decay...
The 1-ton scale CUORE detector is made of 988 TeO2 crystals operated as cryogenic bolometers at a working temperature of ~10 mK. In order to provide the necessary cooling power at 4K stage, a total of five Pulse Tubes refrigerators (PTs) are used. The PTs make the cryogenic system reliable and stable, but have the downside that mechanical vibrations at low frequecies (1.4 Hz and related...
There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however its identity remains a mystery. While weakly interacting massive particles (WIMPs) have been the focus of direct detection searches for several decades, there is growing interest in ultra-light, wave-like dark matter. The Dark Matter Radio (DM Radio) is a sensitive search for axion...
The Epoch of Reionization Spectrometer (EoR-Spec) is an instrument for the Prime-Cam receiver of the 6 m aperture CCAT-Prime Telescope at 5600 m in Chile. EoR-Spec will perform 158 um [CII] line intensity mapping of star-forming regions at redshifts between 3 and 8 (420 - 210 GHz), tracing the evolution of structure during early galaxy formation. At lower redshifts, EoR-Spec will observe...
The High Resolution Mid-Infrared Spectrometer (HIRMES) instrument will fly onboard the National Aeronautics and Space Administration’s (NASA) airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) in 2021. It will provide astronomers with a unique observing window (25−122 μm) for exploring the evolution of protoplanetary disks into young solar systems. The instrument’s focal plane...
Mapping millimeter continuum emission of the astronomical sky has become a key issue in modern multi-wavelength astrophysics. Spectrum-imaging at low frequency resolution is necessary, today, for characterizing the cluster of galaxies. In this context, we built the KISS ground-based spectro-imager.
This instrument is based on 600-pixel arrays of Kinetic Inductance Detector, cooled to 150 mK...
LiteBIRD is a JAXA led strategic L-Class mission designed to the measure the cosmic microwave background (CMB) polarization over the full sky at large angular scales. Measurements over 15 bandwidths from 34 GHz to 448 GHz are made by three telescopes: the Low, the Medium and the High Frequency Telescope (respectively LFT, MFT and HFT).
The Medium Frequency Telescope (89 - 224 GHz) and the High...
The next generation of micro-calorimeter arrays for X-Ray Space Telescopes will expose thousands TESs and their absorbers to cosmic particles. An anticoincidence detector is necessary, because cosmic rays mimic the expected physical signals of x-rays from astrophysical sources. This anticoincidence detector must be operated at 50mK, the same environment of the X-ray micro-calorimeter array by...
The Simons Observatory (SO) is a future cosmic microwave background (CMB) experiment located on Cerro Toco, Chile that will map the microwave sky in temperature and polarization in six frequency bands spanning 27 to 280 GHz. SO will consist of one 6-meter Large Aperture Telescope (LAT) fielding approximately 30,000 detectors along with an array of three 0.5-meter Small Aperture Telescopes...
The X-ray Integral Field Unit (X-IFU) instrument on the Athena mission will be positioned at the Lagrangian point L1 or L2 and be subject to cosmic rays generated by astrophysics sources, primarily composed of protons. Previous simulations have shown that particles of energy higher than 30 GeV will make it through the outer layers of the satellite and will reach the focal plane and it's...
We present the design and implementation of a thermal model, developed in COMSOL, of the Athena X-IFU detector wafer, aiming to probe the wafer-scale thermal response arising from realistic impact rates and energies of cosmic rays at L2. The COMSOL simulation is a four-layer 2D model, where 2 layers represent the constituent materials (Si bulk and Si3N4 membrane), and 2 layers represent the Au...
Kinetic inductance detectors (KIDs) are an attractive sensor option for large-format arrays because they are highly multiplexable. Microstripline-coupled architectures are particularly attractive because they provide flexibility in optical coupling (phased-array antennas, lens-coupled antennas, and feedhorns) and permit integration of on-chip bandpass filters. However, there has not been...
Building upon the legacy of SuperSpec, an on-chip spectrometer operating at 1-mm that will begin observations in 2019, we are pursuing new technologies that will extend this technology to higher frequencies and higher resolving powers. This requires the use of new dielectrics, including both amorphous silicon and crystal silicon using a flipped SOI wafer process, new microstrip materials that...
Proximity effects in Transition Edge Sensors (TESs) do shape the
superconducting transition and are potentially responsible for
non-ideal behavior and undesired non-uniformity in multiplexed large
arrays of X-ray microcalorimeters for the XIFU instrument on board of
the future ESA space mission Athena.
In particular, nonlinear effects in the resistance and the reactance
are...
Metallic magnetic calorimeters (MMCs) are energy dispersive particle detectors that use a paramagnetic temperature sensor sitting in a weak magnetic field to convert the energy deposited into an absorber by an incident particle into a magnetic flux change within a superconducting pickup loop. The latter is connected to the input coil of a current-sensing SQUID to form a superconducting flux...
Photon-counting detectors are an enabling technology for future space-based far-infrared spectroscopic instruments such as those proposed as part of the Origins Space Telescope (OST) and would greatly increase the sensitivity and mapping speed of potential instruments. Microwave kinetic inductance detectors (KID) are a promising technology for these instruments, where large arrays of detectors...
We describe the development of a W-band Lumped-Element Kinetic Inductance Detector (LEKID) array for large ground-based telescopes like the Sardinia Radio Telescope (SRT).
Starting from our previous experiences we decided to use a bi-layer (10 nm thick Ti $+$ 25 nm thick Al) able to cover frequencies greater than 65 GHz; and we decided to use a similar electrical architecture of the OLIMPO...
By lithographically structuring a thin film into arrays of low-loss micro-resonators, each with a unique resonant frequency in the GHz range, microwave kinetic inductance detectors (MKIDs) are inherently suitable for frequency-division multiplexed readout. State-of-the-art MKID arrays for optical/near-infrared detection require frequency spacing of ~ 2 MHz, allowing around 500 pixels to be...
The HOLMES experiment aims to directly measure the $\nu_{e}$ mass using a calorimetric approach. The choice of $^{163}$Ho as source is driven by the very low decay Q-value (~ 2.8 keV), which allows for high sensitivity with low activities (O(10^2)Hz/detector), thus reducing the pile-up probability.
$^{163}$Ho is produced by means of neutron irradiation of a $^{162}$Er$_{2}$O$_{3}$ sample;...
The X-ray Integral Field Unit (X-IFU) is an imaging spectrometer of 3,168 X-ray transition-edge sensors (TESs) under development for ESA’s Athena satellite mission. Our time-division SQUID multiplexing (TDM) architecture is a backup readout option for X-IFU. In TDM, each dc-biased TES is coupled to its own first-stage SQUID (SQ1). The SQ1s are turned on and off sequentially such that one...
Releasing TES islands from a silicon substrate is the most challenging step of TES fabrication process and it limits the yield of wafers. The etching rate and surface shape of wet etching method is difficult to control, and the stop layer of silicon dioxide for deep reactive-ion etching (DRIE) is difficult to clear after releasing process. We present a combined method of DRIE and wet etching...
The application of LTD suffers from the complexity and the lack of reliability of low temperature cryogenic solutions. While dilution cryostats offer a versatile solution for development purposes, they have several drabacks to build a user-friendly systems that requires a high reliability. We discuss the design of a solution based on a continuous ADR cryostat for LTD application in the range...
For a high-sensitive detection of millimeter-waves, mitigation of stray lights coming from outside of view is essential. In particular, we use superconducting detectors for millimeter waves, e.g. cosmic microwave background (CMB). The mitigation of thermal radiations from the ambient temperature is critical. Therefore, a millimeter-wave absorber maintained at an ultra-cold condition in the...
We present a novel technique for characterization of devices in which energy deposited by a particle interaction is measured by sensing athermal phonon creation in an array of kinetic inductance sensors (KIDs) on the substrate’s surface (Moore+ 2012; Aralis+ this conference). We combine a standard KID array readout frequency comb with a strong, monochromatic RF pulse, whose frequency is chosen...
The Simons Array (SA) is an array of three telescopes at the Atacama Desert in Chile, which are designed to observe the polarization pattern of cosmic microwave background (CMB). It is a project evolved from POLARBEAR-2. Each receiver uses 7,588 transition edge sensor bolometers cooled down to a 0.3 K base temperature. A diameter of the primary beam is 2.5 m and the field of view is 4.8...
The discovery of the Trappist-1 system, which consists of an ultra cool M-dwarf star orbited by 7 planets, 3 of which are located in the habitable zone, has demonstrated that these types of planetary systems are very common. The search for bio-signatures in the atmosphere of such planets will be a high-priority science goal of future space missions. The mid-IR band between 3 and 15 um is...
The recently released Xilinx ZCU111 Radio Frequency System-on-Chip (RFSoC) Evaluation Kit is a very promising option for a Microwave Kinetic Inductance Detector (MKID) readout system. It provides FPGA resources of 930,000 system logic cells and 4,272 DSP slices, as well as eight on-chip 14-bit digital-to-analogue converters (DACs) with 6.5 giga-samples per second (GSPS) and eight 12-bit...
The HOLMES experiment is a large-scale experiment for the electron neutrino mass determination. It will perform a calorimetric measurement of the energy released in the electron capture decay of 163Ho. In its final stage, HOLMES will employ 1000 microcalorimeters with Transition Edge Sensors (TES). These detectors are being used more and more frequently in physics and astronomy experiments,...
We have developed Antenna-coupled transition-edge sensor (TES) arrays for high-sensitivity cosmic microwave background (CMB) observations over a wide range of millimeter-wave bands. BICEP Array is the latest instrument in the BICEP/Keck experiment series, which is designed to search for inflationary B-Modes as low as the tensor-to-scalar ratio r=0.01 in the presence of galactic foregrounds. We...
The Simons Observatory (SO) will measure the cosmic microwave background (CMB) temperature and polarization using a suite of new telescopes in the Atacama Desert in Chile. The SO will use multichroic transition edge sensor (TES) bolometer arrays spanning six frequency bands from 27GHz to 280GHz.
The SO will pioneer use of a densely-packed multiplexing architecture based on the microwave SQUID...
Large arrays of microcalorimeters with hundreds of pixels are needed for detection efficiency, but present challenges for data processing. In typical applications of microcalorimeter x-ray and gamma-ray spectroscopy, the desired output is a single energy-calibrated spectrum made by combining data from the individual pixels. This data processing often requires significant input from an expert...
BASKET (Bolometers At Sub-KeV Energy Thresholds) is an R&D program aiming at the development of innovative detectors to search for neutrinoless double beta decay and for the coherent neutrino-nucleus scattering (CNNS) at reactors. In this poster, we will focus on the latter search. We propose the development of Li2WO4 crystals as a new absorber material for the CNNS coupled to new thermal...
Initially looking for a simple method to precisely characterise long thermal time constants (tails) in bolometric chain time responses, we developed a model and an experiment on a simple NTD Germanium sub-millimetric detector. We since realised that Joule ramping, adding a generated triangle wave through a small capacitor to temporarily create a small step in the constant bias current, gives...
Large area spiderweb bolometer of about one centimetre diameter are required for matching multimode or quasi-optical cavities in microwave antenna for CMB measurements as proposed for the Large Scale Polarisation Explorer ballon borne sky survey at 140, 220, 250 GHz. Possible applications at low frequencies, 40 GHz or less, in single mode are also foreseen. The main drawback of such large...
BULLKID is an R&D project on a new cryogenic particle detector to search for rare low energy processes such as low-mass dark matter and neutrino coherent scattering off nuclei. The detector unit we are designing consists in an array of around 100 silicon absorbers sensed by phonon-mediated, microwave-multiplexed Kinetic Inductance Detectors (KIDs), with energy threshold below 100 eVnr and...
The cryogenic calorimeters employed in rare event searches, such as the direct dark matter detection and neutrinoless double beta decay (0νββ) search experiments, desire the lowest energy thresholds and highest energy resolutions to discriminate background events, which therefore require the detector operating temperature to be as low as readily accessible. Superconducting Transition Edge...
From our experience with microwave kinetic inductance detectors (MKIDs) fabrication and characterization at UCSB, we have learned that the energy resolution (R=E/E) of the detectors were strongly dependent of the superconducting transition temperature; R scales as 1/TC. PtSi, Tc = 900 mK, has been used for 5 years as the superconducting material for our MKIDs arrays and we recently started to...
The Simons Array (SA) is a Cosmic Microwave Background (CMB) polarization experiment comprised of three identical telescopes located in the Atacama Desert of northern Chile. SA was designed to measure mid- to large-scale CMB anisotropies in order to constrain the tensor-to-scalar ratio ($\sigma(r=0.1)=6\times10^{-3}$) and the sum of the neutrino masses ($\sigma(\sum m_\nu) = 40$ meV). Each SA...
We aim to realize a single-photon detector which greatly improves its sensitivity and response speed by minimizing of the thermometer volume using a single superconducting iridium thin film and electrical circuit. Iridium has a sharp superconducting transition at 112 mK in bulk, therefore, even if it is used as a single superconducting thin film for the thermometer of TES, excellent energy...
The BICEP and Keck experiments, located at the South Pole, are currently observing the polarized microwave sky over wide range of frequencies at the degree scale to search for the primordial B-modes within the Cosmic Microwave Background. The newest preliminary result shows our Q/U maps reach depths of 2.5, 2.9 and 5.8 $\mu K_{CMB}$ arcmin at 95, 150 and 220 GHz respectively over an effective...
COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) is a cryogenic calorimeter operated at mK temperature, dedicated to the direct dark matter search in underground laboratories. Its main goal is to cross-check the annual modulation signal the DAMA collaboration has been detecting since many years and which has been ruled out by other experiments in some...
Metallic Magnetic Calorimeters (MMCs) are energy-dispersive low-temperature detectors that are particularly suitable for radionuclide spectrometry over wide energy ranges and with high energy resolution. Within the European Metrology Research Project MetroBeta, MMCs are utilized for beta spectrometry. To obtain a high-resolution beta spectrum with enough statistics to allow a shape analysis, a...
The recombination rate of quasiparticle excitations and metal thickness are both important factors in determining the sensitivity of kinetic inductance detectors (KIDs). To maximize KID sensitivity we aim to quantify the interdependence of these two detector attributes. We have measured the decay times of optical pulses produced by illuminating aluminum CPW resonators with an infrared LED....
We are developing arrays of fine-pitch X-ray transition-edge sensor (TES)
microcalorimeters for use in future space-based X-ray astrophysics missions
such as the proposed Lynx X-ray Microcalorimeter. In this contribution we
discuss arrays optimized to have the best possible energy resolution for a
limited energy range for the incoming X-rays, such as up to ~0.8 keV for the
Lynx Ultra-Hi-Res...
POLARBEAR-2A (PB-2A) is a project to observe polarization of the cosmic microwave background (CMB) that deployed to the Atacama Desert in Chile (altitude 5200 m), and is a successor of POLARBEAR (PB) experiment. PB-2A is focusing on observation of polarization in CMB, especially polarization pattern called B-mode as it can constrain fascinating physics such as primordial cosmic inflation and...
We are developing an ultra-wideband spectroscopic instrument, DESHIMA (Deep Spectroscopic HIgh-redshift Mapper), based on the technologies of an on-chip filterbank and Microwave Kinetic Inductance Detector (MKID) in order to investigate dusty starburst galaxies in the distant universe at millimeter and submillimeter wavelength. On-site experiment of prototype DESHIMA was performed using the...
We are developing an ultra-wideband spectroscopic instrument, DESHIMA, a spectrometer integrated on-chip filterbank and microwave kinetic inductance detector (MKID) technologies to investigate dusty starburst galaxies in the distant universe at millimeter and submillimeter wavelength. On-site experiment of prototype DESHIMA was promoted using the ASTE 10-m telescope in Oct. and Nov. 2017. In...
In order to make improved spectral imaging measurements in the ultraviolet, visible and near infrared bands, we investigated the design of a 10 kilopixel Microwave Kinetic Inductance Detector (MKID) sensitive in these bands. We evaluate design parameters and different geometries for MKIDs arrays with equally spaced resonant frequencies and high intrinsic and coupling quality factors. Resonance...
Advanced Mo-based Rare process Experiment (AMoRE) is an international collaboration project to search for neutrinoless double beta decay (0νββ) of 100Mo using Molybdenum-based crystals. To increase the detection sensitivity for this extremely rare event, AMoRE aims at operating the detector in zero-background condition. A commissioning phase of the project, AMoRE-Pilot were carried out during...
The reference design for the next-generation cosmic microwave background (CMB) experiment, CMB-S4, relies on large arrays of transition edge sensor (TES) bolometers coupled to Superconducting Quantum Interference Device (SQUID)-based readout systems. Mapping the CMB to near cosmic variance limits will enable the search for signatures of inflation and constrain dark energy and neutrino physics....
The design and experimental demonstration of a 16-channel frequency-domain multiplexing (FDM) readout for transition-edge sensor (TES) bolometers is presented. This MUX electronics is intended to readout the 326 spiderweb bolometers of the LSPE/SWIPE balloon-borne experiment, which aims at the detection of the B-mode polarization of the cosmic microwave background (CMB) at large angular...
We present a high-yield absorber-coupled transition-edge sensor (TES) fabrication process which can field kilopixel-scale arrays with a noise equivalent power (NEP) of 1x10^-19 W/rtHz as targeted by the US SpicA FAR infrared Instrument (SAFARI) proposed to fly on the Space Infrared Telescope for Cosmology and Astrophysics (SPICA). Each pixel consists of a metal film absorber patterned onto a...
Very low threshold massive bolometers are key devices for light dark matter search and coherent elastic neutrino-nucleus scattering physics. In this paper we describe recent development on Germanium bolometers equipped with NbSi transition edge sensors. These sensors exhibit a transient out-of-equilibrium phonon signal that improves detector sensitivity. Optimization of the bolometer design to...
We will report Kinetic Inductance Detectors(KIDs) fabricated on a 6in and an 8in process in an external foundry. These processes allow us to fabricate large arrays of KIDs.
Increasing the number of superconducting detectors strongly supported a wide variety of astronomical observation and particle physics experiment. Actually, the sensitivity of the CMB measurements is exponentially improved...
DIAS is working on the further development of Microwave Kinetic Inductance Detectors (MKIDs) for astronomical instrumentation in the visible and near-IR. In collaboration with Trinity College Dublin we design, fabricate and analyse our detector prototypes and we intend to build and deploy an astronomical camera towards the project’s end. We plan to use sub-stoichiometric TiNx multi-layered...
Recent millimeter-wavelength telescopes require cryogenically cooled optics to achieve a high-sensitivity observation. A broadband anti-reflection (AR) technology that works at cryogenic temperature has been desired. Silicon is one of the suitable materials for millimeter-wave optics in cryogenic use. This is because it shows low-loss at a cryogenic temperature in the millimeter wavelength.
...
The Simons Observatory (SO) is a next generation Cosmic Microwave Background (CMB) experiment in the Atacama Desert of Chile that will measure both temperature and polarization at frequencies ranging from 27 - 270 GHz. SO will deploy 60,000 transition edge sensor bolometers across 49 multi-chroic detector arrays. Housed in both large-aperture (6 m) and small-aperture (0.5 m) telescopes, these...
Transition edge sensors (TES) exhibiting high energy resolution of a single optical photon have been applied to photon-counting microscopy for biological imaging[1]. We are aiming to develop multi device TES showing large effective area in order to improve measurement efficiency of photon-counting microscopy. We fabricated 3×3 array TES where single device exhibits dimension of 8...
The observation of neutrino-less double beta decay(0nbb) would be the most practical way to prove the Majorana nature of the neutrino and lepton number violation. CANDLES studies Ca-48 double beta decay using CaF2 scintillator. The detector is currently operating with CaF2 crystals in the Kamioka underground observatory, Japan.
As a next generation detector of the CANDLES experiment, we...
The purpose of COBAND (COsmic BAckground Neutrino Decay) experiment is to determine neutrino mass by measuring neutrino decay photon. Expected neutrino decay photon energy is too small (25 meV) to detect using a semiconductor detector,so we adopted the STJ (Superconducting tunnel Junction) detector using superconductor which has much smaller energy gap than a semiconductor. Our Nb/Al-STJ...
Axion is a hypothetical elementary particle proposed to solve the strong CP problem in QCD and is one of dark-matter candidates. The sun is considered to emit axions of a continuum spectrum similar to that of blackbody emission with kT~1.3 keV by the Primakoff effect. In addition, line emission is expected through M1 transitions of nuclei; an example is 14.4 keV from $^{57}$Fe (Moriyama...
SuperSpec is a new technology for millimeter and submillimeter spectroscopy. It is an on-chip spectrometer being developed for multi-object, moderate resolution, large bandwidth survey spectroscopy of high-redshift galaxies for the 1 mm atmospheric window. SuperSpec targets the CO ladder in the redshift range of z = 0 to 4, the [CII] 158 um line from z = 5 to 9, and the [NII] 205 um line from...
SPICA is a spatial infrared observatory project proposed by the Japanese spatial agency (JAXA) and selected in May 2018, with two other projects, as M5 medium mission candidate of the ESA Cosmic Vision Program. B-BOP is one the three instruments of this project: a three-band polarimetric imager made of five 16 x 16 pixels matrices and one 8 x 8 pixels matrix.
The B-BOP detector has the...
Film stress has been long known to affect the properties and performances of thin superconductors. In the quantum computing field, a slightly compressive film (~ -100 MPa) has been shown to be ideal for making superconducting-insulating-superconducting (SIS) junctions, no analogous study has been done for superconducting resonators. Anecdotal evidence suggests compressive films show lower loss...
For integrated FET based circuitry in close proximity to the front-end detectors or semiconductor or superconducting qubit generating hardware held at cryogenic temperatures, any transfer of heat produced in the FET circuitry alters the performance conditions of the system and results in noise and spurious signals. Therefore, it is of great interest to analyze and experimentally characterize...
The energy range of transition-edge-sensor (TES) X-ray microcalorimeters with a multiplexed read-out depends upon the width and shape of the TES superconducting transition, and also on the dynamic range of the read-out. In many detector systems, the multiplexed read-out slew rate capability will be the limiting factor for the energy range. In these cases, if we are willing to accept some...
Future cosmic microwave background (CMB) experiments, including the large scale ground based Stage Four CMB Experiment (CMB-S4), satellites, and balloons, aim to map the CMB to an unprecedented precision in order to answer several key questions in cosmology. However, to reach the target noise sensitivity, more than 100,000 detectors will be needed. Microwave Kinetic Inductance Detectors...
Kinetic inductance detectors (KID) have received increased interest due to their low noise, and scalability to large format arrays required by next generation of astronomical telescopes. The development of KIDs has progressed rapidly, with very low noise equivalent power demonstrated by several groups and KIDs arrays implemented in several ground-based and air-borne instruments. In this...
SAFARI is the prime focal-plane instrument on board the space observatory, SPICA, a candidate for ESA’s fifth medium class mission in its Cosmic Vision science programme, with a planned launch date in 2032. Combining a large, cold mirror with ultra-sensitive detectors (dark NEP $\leq2\times10^{-19}\rm\ W/\sqrt{Hz}$), SPICA/SAFARI will probe the chemistry of the cold, dusty Universe with...
A large cylindrical cadmium molybdate crystal with natural isotopic abundance has been successfully used to fabricate a cryogenic microcalorimeter. The measurement was performed above ground at milli-Kelvin temperature, allowing simultaneous readout of the heat and the scintillation light using NTD-Ge sensors. We present its powerful discrimination capability of $\alpha$ versus $\gamma/\beta$...
Kinetic inductance detectors (KIDs) are being implemented in more telescopes due chiefly to their excellent sensitivity and natural multiplexability. We have integrated a superconducting nanowire into the resonant circuits, increasing the frequency response, which in turn, increases the sensitivity for single photon detection. Analyzing the frequency response as a function of optical power, we...
We present simulation software utilizing graphical processing units (GPUs) for the physics of detectors based on arrays of transition-edge sensors (TES).
With the support of GPUs it is possible to perform simulations of large pixel arrays, making the software a powerful tool in detector development.
Comparisons with TES small-signal and noise theory confirm the representativity of the...
The GroundBIRD is a telescope aiming a precise observation of the polarization of the cosmic microwave background (CMB) at the Teide observatory in Spain. The E-mode polarization of CMB has been observed by various experiments and provided useful information of the early universe. On the other hand, the B-mode of CMB polarization, which is known to be generated by the primordial gravitational...
High resolution spectrographs employed in astronomy and elsewhere use a primary dispersive component to separate light at angles corresponding to different wavelengths, roughly $d\sin(\theta) = m \lambda$. A secondary dispersive component is then used to separate the orders, $m = 0, 1, 2,3...$ By this method, spectral features can be very well separated and detected at high spectral...
HOLMES is an experiment with the aim to directly measure the neutrino mass. HOLMES will perform a precise calorimetric measurement of the end point of the Electron Capture (EC) decay spectrum of $^{163}$Ho in order to extract information on neutrino mass with a sensitivity below 2 eV. In its final configuration, HOLMES will deploy 1000 detectors of low temperature microcalorimeters with...
The SuperCMDS collaboration uses advanced high voltage Neganov-Luke phonon-assisted detectors for low mass dark matter detection. The leakage current associated with high voltages limits the ultimate sensitivity reach for this large mass detector technology. Although the current leakage performance of the detectors is sufficient for SuperCDMS SNOLAB requirements, improvements are needed to...
B-BOP is one of the three scientific instruments of SPICA which aims, among other scientific goals, to map the galactic filamentary structures and their associated magnetic fields.
Each pixel of B-BOP consists of two orthogonal arrays of dipole antennas supported by four suspended interlaced spirals based on Si :P, B. In order to have a deep understanding of the influence of the doping...
We are developing a chemical imaging capability (“Hyperspectral X-ray Imaging”) for microscopic samples based on ultra-high-resolution x-ray emission spectroscopy with large transition-edge sensor microcalorimeter arrays in the scanning electron microscope. By combining microcalorimeter arrays with hundreds of pixels, high-bandwidth microwave frequency-division multiplexing, and fast digital...
The existence of Dark Matter (DM) is supported by astronomical data and observations; however, to date there is no confirmed direct detection of DM. The SuperCDMS collaboration has expanded its capabilities with the development of the prototype HVeV detector. The HVeV detector uses a high voltage applied across the Si (or Ge) crystal to accelerate charges, which scatter off the crystal lattice...
Energy-dispersive low-temperature detectors (LTDs) enable radionuclide spectrometry with energy resolutions exceeding by far those of conventional detectors such as Si(Li) detectors. Also, the energy threshold of radionuclide spectra can be much lower than with conventional techniques. Within the European Metrology Research Project “MetroBeta”, beta spectrometry based on metallic magnetic...
Superconducting transition edge sensors (TESs) have demonstrated high detection efficiency and photon-number resolving capability, making TESs attractive in quantum information. The detection efficiency is determined by several factors: fiber-to-detector coupling, absorption of photons in superconducting films, and internal quantum efficiency. The optical absorption of titanium film at the...
Refrigerators based on normal metal-insulator-superconductor (NIS) junctions are an attractive solution for cooling superconducting detectors, particularly in balloon- and space-based experiments. The addition of NIS devices to a cryogenic system can enable payload temperatures near 100 mK from launch temperatures near 300 mK. Used in conjunction with a 3He sorption fridge, NIS devices can...
A superconducting transition edge sensor (TES) is used as an ultrasensitive thermometer to measure temperature changes in the range of μK. In the framework of the CRESST experiment (Cryogenic Rare Events Search with Superconducting Thermometers); which is a direct dark matter detection experiment, tungsten TESs are used as the sensing element. Detectors in CRESST are constituted, in brief, of...
We target to realise a future satellite mission, LiteBIRD, which will observe full sky at the second Sun-Earth Lagrangian point (L2) and measure the polarisation of the Cosmic Microwave Backgrounds (CMB).
We plan to use Transition Edge Sensor (TES) bolometers to measure the polarisation signal.Measurements of past satellite missions at L2 were disturbed by galactic cosmic rays.Therefore, we...
Bringing the operating frequency of available single photon detectors down to the microwave regime is an important capability for microwave quantum optics and superconducting quantum information processing. However, this task remains challenging due to the small energy of photons at this frequency compared to room temperature noise. Our circuit quantum electrodynamics (cQED) based detector [1]...
KIDSPec, the Kinetic Inductance Detector Spectrograph, is a novel concept for a highly sensitive, medium spectral resolution optical through near-IR spectrograph. It uses the intrinsic energy resolving capability of an array of optical/IR-sensitive MKIDs to distinguish multiple orders from a low-resolution grating. By acting as an ‘order resolver’, the MKID array replaces the cross-disperser...
CaF2 is a novel target for neutrino-less double-beta decay and spin-dependent dark matter studies, since 48Ca is one of the double-beta decay nuclei and 19F is sensitive to spin-dependent elastic scattering with dark matter.
We implement kinetic inductance detectors(KIDs) on CaF2 crystal which is used as substrate. KIDs on CaF2 is cooled to low temperature with a dilution fridge. The resonance...
We developed a measurement system for simultaneous detection of phonon and scintillation signals from Li2MoO4 crystals based on a metallic magnetic calorimeter (MMC) readout technology. The work was motivated to to check the properness of Li2MoO4 crystals as the main target molybdate crystals for the advance Mo-based rare process experiment (AMoRE). MMCs are one kind of the most sensitive...
LiteBIRD is a JAXA-led mission aimed at the studies of B-mode polarization of the cosmic microwave background. Measurements on 15 observing bands from 34 GHz to 448 GHs are made on two instruments, LFT (Low Frequency Telescope) and MHFT (Medium and High Frequency Telescope). To reach the desired sensitivities, more than 4000 TES (transition edge sensors) detectors, used on both instruments,...
In the current direct dark matter search landscape, the leading experiments in the sub-GeV mass region mostly rely on cryogenic experiments which employ crystalline targets. One attractive type of crystals for these experiments are those containing lithium, such as LiF, Li$_{2}$MoO$_{4}$, and LiAlO$_{2}$. This is due to the fact that $^{6}$Li can absorb neutrons, a challenging background for...
Th-229 is famous nucleus as the unique candidate of nucleus which can be utilized for realizing nuclear clock. Historically Th-229 is expected to have very low lying isomeric state of less than 10 eV. Existence of 10 eV excited state means the nucleus can be excited by the 124 nm UV LASER. Once the energy level of such isomeric state can be determined precisely by the order of 0.1~0.01 eV, it...
We have been developing a microwave superconducting quantum interference device (SQUID) multiplexing (MW-Mux) for the future X-ray astronomical observatory with large field of view and high-resolution imaging spectrometer such as super DIOS (T. Ohashi et al., 2018). MW-Mux consists of a number of superconducting resonators coupled to each dissipationless radio-frequency (RF) SQUID detecting...
We present the progress on the MMC development to be used in the AMoRE project. AMoRE used MMCs as the main readout technology for heat and light detection. The MMCs sensors was first developed based on a gold alloy with 1000 ppm Er. The size of the AuEr sensor material was determined to optimize signal size in the heat channel having a large crystal absorber of about 100 cm^3. Since the...
Cryogenic neutrinoless double beta decay searches and low mass particle dark matter searches require a Transition-Edge Sensor (TES) with a high energy resolution. An effective way to improve the energy resolution of a TES detector is to use low-Tc TES. The common practice making a low-Tc TES is using the proximity effect, in which the Tc of a superconducting film is reduced with a normal metal...
Using microcalorimeters, a high statistics, high resolution calorimetric spectrum of electron capture in ${}^{163}$Ho can be used to determine the neutrino mass. The spectral shape can be calculated from first principles with various assumptions and approximations. To determine the validity of these choices, the theoretical calculations must be compared to data from multiple isotopes. New...
Kinetic inductance bolometer represents a sensor technology that can be scaled into large 2D detector arrays. Such detector arrays are attractive for passive sub-millimeter and terahertz imaging systems, providing mechanical simplicity and good-enough imaging capability for terrestrial imaging. We have previously reported on the successful implementation of an imaging system containing a focal...
Cadmium-116 is one of the most favourable candidates for neutrinoless double-beta decay (0vBB) searches for two main reasons: first, the energy of the decay (Q = 2813.49 keV) is higher than the end point of the natural gamma radioactivity (2615 keV); then, it can be embedded in CdWO4 crystals, which are efficient scintillators. It was used by the AURORA experiment, which improved the half-life...
The SAFARI instrument is a far infrared (34-230 µm) spectrometer on SPICA
(SPace Infrared telescope for Cosmology and Astrophysics), which aims to study subjects such as galaxy evolution and star formation. The transition edge sensors (TES) in the SAFARI instrument are extremely sensitive and are required to have an NEP of $2\times10^{-19}\rm\ W/\sqrt{Hz}$ to ensure background limited...
We present a noise model of the cryogenic High Electron Mobility Transistor developed at C2N laboratory. The model is based on dedicated measurement of voltage and current noises at temperature in the 1K-10K range. The model shows that 10 eV rms and 20 eVee rms could be obtained on the heat channel and ionization channel of massive semiconductor detector operated at low temperature.
Such...
The axion is an excellent dark matter candidate motivated by the Peccei-Quinn solution to the strong-CP problem.The research group of the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) in Korea is searching for axion dark matter through several haloscopes experiments. The method, suggested by Prof. P. Sikivie, exploits the axion conversion in...
Microwave Kinetic Inductance Detector (MKID) is one of cutting edge superconducting detectors. Its principle is based on a superconducting resonator circuit. A signal transferred to the MKID breaks Cooper pairs in the superconducting resonator. As a result, we detect an intensity of the signal as a variation of the resonant condition. It is important to calibrate the variation of the resonant...
We report on the observation of frequency up-conversion gain in superconductor-insulator-superconductor (SIS) tunnel junctions at millimeter wavelengths. So far, SIS tunnel junctions have been used as frequency down-converters with the ultra-low noise performance approaching the quantum limit and have exhibited positive gain in the down-conversion process. In principle, it is also possible to...
Sub-mm wave on-chip filter-bank spectrometers disperse THz radiation by means of shunted band-pass filters whose ideal frequency response is a matched-filter to the Lorentzian-shaped spectrum of broadened extra-galactic emission lines, resulting in a resolution requirement of $R=f/\delta{f}\sim{}500$. Furthermore, the instantaneous bandwidth of operation should be as wide as possible to allow...
SPT-3G is a third-generation camera for the South Pole Telescope that uses a trichroic pixel architecture and ~16,000 transition-edge sensor (TES) bolometers to map the polarization of the cosmic microwave background (CMB). After successfully observing since January 2017 using TiAu TES bolometers, in December 2018, we replaced one of the ten 150mm detector wafers that comprise the focal plane...
We present an investigation of frequency up- and down-conversion processes in a superconductor–insulator–superconductor (SIS) tunnel junction. A quasiparticle SIS tunnel junction potentially allows positive conversion gain in the down-conversion process from a millimeter wave to a microwave. Recently, we experimentally found that the tunnel junction can also up-convert a microwave signal to a...
A large array of Transition-edge Sensors (TES) is currently in development as an X-ray spectrometer for the Linac Coherent Light Source II (LCLS-II) at SLAC National Laboratory. LCLS-II is a fast (100 KHz) pulsed X-ray laser that will be almost 1000x brighter than its predecessor, LCLS-I. The combination of high-throughput TES X-ray detectors with this high-luminosity light source will enable...
On-chip spectrometers, such as DESHIMA and SuperSpec, require transmission lines with $Q_i>10^4$ to achieve sufficient system efficiency. Transmission lines with lower $Q_i$ would introduce too much losses in the line from antenna to filter and in the filters themselves. Data regarding the losses of transmission lines at THz frequencies and sub-K temperatures is severely lacking. An on-chip...
Low-temperature Nuclear Magnetic Resonance (NMR) samples offer long-lived quantum states that are extremely sensitive to small perturbations from new physics, including interactions with axion dark matter. The sensitivity of NMR axion detectors is sometimes limited by the precision with which the magnetization of the spin state can be read out, especially when large geometric pickup coil...
Total decay energy spectrometry (Q spectrometry) with cryogenic detectors is a promising technique for analysis α-emitting actinides. The radioactive sample is embedded in a 4 pi absorber, and the total decay energy (Q value) for each disintegration is measured. The energy spectrum is therefore simple: there is one peak per radionuclide corresponding to the Q value. The high energy resolution...
Frequency-Division Multiplexing (FDM) is the baseline readout system for the large array of superconducting Transition-Edge Sensors (TES's) under development for the ESA X-IFU instrument on the future Athena X-ray telescope.
Excellent single pixel performance has been demonstrated already with MHz biased MoAu NASA-Goddard TESs and energy resolution below 2eV @ 6keV is routinely observed, in...
We report on the status of our development of dark matter detectors in which the recoil energy deposited in a crystalline substrate is sensed via the absorption of athermal phonons in kinetic inductance detector (KIDs) (cf. Moore et al 2012, Cornell et al 2014, Chang et al 2018). KIDs are highly multiplexable, offering the prospect of tens or even hundreds of phonon sensors per kg-scale...
High-resolution X-ray microcalorimeters are challenging to characterize and calibrate at low energies because of the difficulty of obtaining narrow calibration lines approaching the detector resolution. Short pulses of optical light, e.g. generated by a 405 nm laser diode, can be used to provide combs of very narrow calibration lines for TES detectors as long as the detector can resolve the...
SuperSpec is an ultra-sensitive on-chip spectrometer for mm and sub-mm wave observations of high-redshift dusty galaxies. The device employs a filterbank architecture in which kinetic inductance detectors (KIDs) are coupled to mm-wave resonant filters along a single microwave feedline. We present the progress on several advances to the SuperSpec filter bank technology that will be crucial for...
The Large Scale Polarization Explorer (LSPE) is a cosmology program for the measurement of large scale curl-like features (B-modes) in the polarization of the Cosmic Microwave Background. Its goal is to constrain the background of inflationary gravity waves traveling through the universe a t the time of matter-radiation decoupling.
The two instruments of LSPE are meant to operate synergically...
Metallic magnetic calorimeter (MMC) technology is a leading contender for detectors for the Lynx X-ray Microcalorimeter, which is an imaging spectrometer consisting of an array of greater than 100,000 pixels. The fabrication of such large arrays presents a challenge when attempting to route the superconducting wiring from the pixels to the multiplexed readout. If the wiring is designed to be...
The X-ray Integral Field Unit (X-IFU) will operate an array of more than 3000 Transition-Edge Sensor pixels at 90 mK with an unprecedented energy resolution of 2.5 eV at 7 keV. In space, primary cosmic rays and secondary particles produced in the instrument structure will continuously deposit energy in the detector wafer and induce fluctuations of the pixels' thermal bath. In this...
We are developing high resolution transition edge sensor (TES) microcalorimeters for the Athena X-ray Integral Field Unit (X-IFU) instrument. The x-ray absorbers of the TES pixels must provide high quantum efficiency (QE) for the incident x-rays and high reflectivity to longer wavelength radiation. Our pixel designs use ~ 5 micron thick electroplated Au-Bi absorbers. The thickness of the Au...
Cryogenic lumped-element resonators are near-optimal detectors of the electromagnetic interactions of ultralight (sub-μeV), wavelike dark matter candidates, including axions and hidden photons. Operated as classical detectors, they have sensitivity to well motivated regions of dark matter parameter space, including the QCD axion band at masses from 10neV to 1 μeV. Quantum coherent measurement...
Discovery of neutrino oscillations revealed that neutrinos have mass, but the absolute mass of the neutrinos still remains unknown. Since neutrinos are a massive particle, a heavier neutrino may decay into a lighter one with a photon emission. The photon energy is expected to be around 25 meV at maximum. The COsmic BAckground Neutrino Decay (COBAND) experiment aims at detecting the photons as...
We explore the use of cryogenic detectors as the energy resolving component of a laboratory transmission EXAFS instrument. EXAFS (Extended X-ray Absorption Fine Structure) is a powerful X-ray technique that gives element specific information about the structure of molecules. It has the enormous advantage that it does not need a specialized sample form, such as a crystal, and so it can be...
We are developing a detector array for astronomical observation in
100-GHz band using Microwave Kinetic Inductance Detector (MKID)
and a readout system for the array with frequency sweeping scheme,
which uses a frequency sweeping probe signal instead of a
fixed-frequency probe signal. This scheme enables us to obtain
resonance spectra of MKIDs in an array simultaneously and to derive
the...
The application of transition edge sensors (TESs) to exotic atom X-ray
spectroscopy requires challenging techniques of measurement and
analysis. We have developed them through the pionic and kaonic atom
X-ray measurements with a 240-pixel TES array at hadron beamlines.
One of the important analyses is to investigate the charged particle
impacts on the TES array. The energy deposits of charged...
MUSCAT (the Mexico UK Submillimetre Camera for AsTronomy) is a 1.1-mm receiver currently in the final stages of development and scheduled for deployment on the Large Millimeter Telescope (LMT) on Volcán Sierra Negra in Mexico during the third quarter of 2019. In its first generation, MUSCAT will use 1,500 LEKID detectors to carry out follow-up observations of Herschel-ATLAS fields. However,...
Superconducting sensors for millimeter and submillimeter astronomy require thin dielectric films. The dielectrics SiO2 and SiNx are currently used for these applications for fabrication convenience reasons. However, they have a loss tangent (tan δ) close to 1e-3. The loss tangent is a critical parameter for these applications because it determines the microstripline's attenuation and the...
Due to their excellent energy resolution, the intrinsically fast signal rise time, the huge energy dynamic range and the almost ideally linear detector response, metallic magnetic calorimeters are very well suited for a variety of applications. In particular, the ECHo experiment aims to utilize large-scale MMC based detector arrays to investigate the mass of the electron neutrino. However,...
Micro-Spec (μ-Spec) is a direct-detection spectrometer that integrates all the components of a diffraction-grating spectrometer onto a ∼10-cm$^2$ chip using superconducting microstrip transmission lines on a single-crystal silicon substrate. The second-generation μ-Spec has been designed to operate with a spectral resolution of ∼512 in the far-infrared and submillimeter (420–540 GHz, 714–555...
The Simons Observatory (SO) will place new limits on cosmological parameters by measuring fluctuations in the temperature and polarization of the cosmic microwave background (CMB). Achieving these high precision measurements will require state-of-the-art instrumentation with extraordinary sensitivity and carefully-tuned parameters. To assist with instrument development, SO uses BoloCalc, a...
Modern Cosmic Microwave Background (CMB) detectors are planar superconducting devices that employ striplines for the millimeter radiation transfer from a coupling antenna to a power readout Transition Edge Sensor (TES), as well as in-line filters to define the bandpass. Quality of dielectric materials separating signal lines and ground plane are crucial to determine yield of the fabrication...
The Simons Observatory (SO) is a polarized CMB experiment on the Cerro Toco Plateau with large overlap with other optical and infrared surveys (DESI, LSST, HSC). Polarized measurements of the CMB provide a wealth of cosmological and astrophysical information. SO aims to improve existing CMB polarization measurements at a large range of angular scales by building 3 small aperture telescopes...
D. McCammon, F. T. Jaeckel, K. Nelms, C.V. Ambarish, A. Roy
Physics Department, University of Wisconsin, Madison, WI, 53706 USA
Superconducting/normal metal layer bilayers with tunable TC are widely used as transition edge sensors in high-resolution microcalorimeters. When these layers are patterned, channels with enhanced TC (compared to the bilayer) form along the edges of the device...
Stripline and Microstrip with the characteristics of low-cost, high reliability and easy installing are more suitable for the cryogenic applications compared with semi-rigid coaxial cables. The stripline and microstrip were designed and fabricated in our laboratory through researching into thermal conductivity of the internal and external conductors and the technology of microwave and...
Superconducting transition-edge sensors (TESs) are highly sensitive detectors. Based on the outstanding performance on spectral resolution, the X-ray Integral Field Unit (X-IFU) instrument on-board Athena will be equipped with a large array of TES based microcalorimeters. SRON is developing a Frequency Domain Multiplexing (FDM) readout scheme for the X-IFU instrument. SRON will also develop...
Superconducting parametric amplifiers based on nonlinear kinetic inductance are well suited for use as readout amplifiers for low temperature detector technologies involving frequency domain multiplexing at GHz frequencies. These paramps can have very wide instantaneous bandwidth and large enough dynamic range to handle thousands of signals at typical levels for superconducting detectors. ...
Based on the giant thermoelectric effect of a superconductor/ferromagnet tunnel junction [1], a novel ultrasensitive radiation detector (SFTED) has been proposed both as bolometer [2] and calorimeter [3]. This type of detector can be operated without the need of additional circuit lines for the sensing bias, and at the same time providing a noise equivalent power (NEP) below...
Ag and Er in a carbon crucible with 2” inner diameter was melt by induction heating. The chamber of the heating furnace was pumped into vacuum and maintained at Ar gas atmospheric pressure to suppress Ag evaporation. The internal temperature of the carbon crucible was raised to 1700 oC even higher than Er melting point(1529 oC) to form a convention flow in melt metals. Convection of the metal...
We have investigated dilute alloys of small amounts of holmium in gold and silver in order to determine the impact of their heat capacity contribution on the performance of the microcalorimeters in the neutrino mass experiment ECHo. In particular, we focus on alloys with atomic concentrations of $x_\textrm{Ho}=0.01\,\mathrm{\%} \text{ -} \,3\,\%$ at temperatures between $10\,\textrm{mK}$ and...
Shanghai is constructing a soft X-ray and Hard X-ray Coherent Light Facility near to ShanghaiTech, to do Light-element X-ray fluorescence analysis and dilute or radiation sensitive sample measurement, we need develop TES X-ray spectrometer for them. To reach high energy resolution and keep a high flux ability, we prefer a small size TES. However, small size TES may show weak link effect, this...
A complete understanding of the pulse shape of the signals produced by the CUORE bolometers is a crucial topic which can contribute to the identification of the physical parameters which are affecting the detector performance.
The CUORE experiment could profit from the development of a predictive model of the bolometers response. Indeed, understanding which are the intrinsic thermal or...
Large mass bolometers are excellent detectors for the search of rare events, such as neutrinoless double beta decay or dark matter interactions. Currently the experiment which brought the bolometer technique to its greatest expression in terms of size and modularity, is CUORE: an array of 988 tellurium dioxide bolometers with a total active mass of 741 kg. The experiment started taking data in...
ATHENA is a large ESA mission selected for launch in 2031. One instrument of the payload is the X-IFU, a cryogenic spectrometer providing spatially resolved high-resolution X-ray spectroscopy. The core of the instrument is a 3kilo-pixels TES array operated at 50 mK thermal bath. Since the expected particle background would degrade the instrument performance, advanced reduction techniques have...
The EXperiment for Cryogenic Large-aperture Intensity Mapping (EXCLAIM) is a high altitude balloon spectrometer designed to deepen our understanding of star formation in a cosmological context. Rather than identifying individual objects, as in a galaxy redshift survey, EXCLAIM will be a pathfinder to demonstrate an intensity mapping (IM) approach. EXCLAIM will operate at 424 – 540 GHz with a...
The R(T,I,H) shape of the superconducting transition of Transition Edge Sensors (TESs) is crucial for their operation and performances. Its sharpness as a function of temperature and current influences the devices noise. Also, the behaviour of the resistance as a function of these three parameters can provide understanding of the physical phenomena governing the transition, which in turn can...
We have been developing superconducting transition-edge sensor (TES) microcalorimeters for a variety of potential astrophysics missions, including Athena. The X-ray Integral Field Unit (X-IFU) instrument on this mission includes a high density pixel array on a 0.275 mm pitch. This configuration induces electrical and thermal cross-talk between near-by pixels which need to be assessed. The...
Johnson noise thermometry is a primary measurement technique that can be used to probe the thermal transport and thermodynamic properties of hot electrons in conductors. With this technique, a hot electron bolometer (HEB), consisting of a 20 nm thick titanium (Ti) microbridge and a niobium (Nb) log spiral antenna, was developed for terahertz radiation detection. The Nb antenna with large...
We present developments in the simulation of Transition-Edge Sensor (TES) microcalorimeters under AC bias for the purpose of detector studies.
The model extends the TES differential equation system in the DC case to take into account effects of a varying TES reactance during pulses.
The impact of these effects on pulse shapes is examined using simulations based on Z(T,I) surfaces calculated...
Micro-X is projected to set world-leading limits in indirect galactic dark matter searches in a single sounding rocket flight. Micro-X's region of interest (0.5-5 keV) is of particular interest following the reported observation of an anomalous line by the X-ray satellites in this band. Following the second Micro-X flight in 2019, which will observe the Cassiopeia A supernova remnant, the...
Frequency domain multiplexing (fMUX) is a mature readout scheme for TES detectors in the millimetre and sub-millimetre bands. It is implemented at MHz carrier frequencies for the South Pole Telescope, POLARBEAR, and Simons Array, and is planned for deployment on the LiteBIRD space polarimeter. Existing implementations couple to the detectors with low-noise, low-input impedance SQUID...
We present a comprehensive study of current tunable kinetic inductance in Atomic Layer Deposited (ALD) Titanium Nitride (TiN) and Niobium Titanium Nitride (NbTiN) thin film devices. The utility of such current tunable kinetic inductance devices extends from parametric amplifiers, to photon detectors, to phase control circuits and detector readout circuits. We study devices made with different...
We present the concept for a resonator-based readout for Superconducting Nanowire Single Photon Detectors (SNSPDs). SNSPDs are widely implemented as photodetectors in multiple applications because of their low timing jitter, high quantum efficiency and low dark count rate. In our scheme, the shunted current from the SNSPD is not routed to the input of a low noise amplifier, but is inductively...
An innovative function, called group trigger, is implemented in a 240 pixels X-ray Transition Edge Sensors to store waveforms of both a triggered pixel and surrounding pixels. It is a useful diagnostic tool to investigate an experimental environment. It can record X-ray pulses, associated cross talk events. Under the high rate of charged particle background such as an accelerator, it enables...
High-resolution X-ray spectroscopy of highly-charged muonic atoms/ions isolated in vacuum is an ideal probe to explore quantum electrodynamics (QED) effects. One of the major topic in fundamental atomic physics is to conduct these experiments in high-Z atom in which the bound particles experience extremely strong electric fields.
A negatively-charged muon can bind to a nucleus via the Coulomb...
The lowest energy of $^{229}$Th isomeric state is widely known to be around 10 eV and by utilizing this level, a nuclear clock may be realized. The $^{229}$Th nuclear clock is expected to have an enhanced sensitivity to the time variation of the fine structure constant.
To realize the clock, we need to determine the lowest-energy of the $^{229}$Th isometric state precisely. The approach to...