SuperCDMS IMPACT: an Ionization Yield Calibration Program

23 Jul 2019, 17:45
1h 15m
Piazza Città di Lombardia (Milano)

Piazza Città di Lombardia

Milano

Piazza Città di Lombardia, 1, 20124 Milano MI
Poster Low Temperature Detector Applications Poster session

Speaker

Runze Ren (Northwestern University)

Description

The SuperCDMS collaboration has been developing cryogenic silicon and germanium detectors optimized for phonon signals from dark matter-nucleus collisions. The detectors are sensitive to dark matter masses between about 1 and 10 GeV/c^2, which corresponds to sub-keV energy deposits from the nuclear recoil signal. The sensitivity of a SuperCDMS high voltage detector is achieved by applying a high voltage across the crystal. Under the electric field, the signal from electron-hole pairs generated from nuclear recoil events is amplified through the Neganov-Trofimov-Luke (NTL) effect. However, the yield of electron-hole pairs, which is critical to reconstructing the energy of the recoiling nucleus, is not well characterized in the sub-keV nuclear recoil energy region. I will describe a neutron scattering experiment called IMPACT (Ionization Measurement with Phonons At Cryogenic Temperatures), which is designed to measure the ionization yield in SuperCDMS style detectors.

Student (Ph.D., M.Sc. or B.Sc.) Y
Less than 5 years of experience since completion of Ph.D Y

Primary author

Runze Ren (Northwestern University)

Presentation Materials

There are no materials yet.