163Ho distillation and implantation for Holmes experiment

25 Jul 2019, 17:45
1h 15m
Piazza Città di Lombardia (Milano)

Piazza Città di Lombardia

Milano

Piazza Città di Lombardia, 1, 20124 Milano MI
Poster Low Temperature Detector fabrication techniques and materials Poster session

Speaker

Matteo De Gerone (GE)

Description

The HOLMES experiment aims to directly measure the $\nu_{e}$ mass using a calorimetric approach. The choice of $^{163}$Ho as source is driven by the very low decay Q-value (~ 2.8 keV), which allows for high sensitivity with low activities (O(10^2)Hz/detector), thus reducing the pile-up probability.
$^{163}$Ho is produced by means of neutron irradiation of a $^{162}$Er$_{2}$O$_{3}$ sample; then, it is separated from the other species generated during the irradiation process. A chemical process removes every species other than Holmium, but this is not sufficient to remove all potential background sources: infact, $^{166m}Ho$ has a beta decay ($\tau$ ~ 1200y) which can induce signal below 5 keV. The contaminants removal is crucial so a dedicated implanting system has been set up. It is designed to achieve an optimal mass separation @163 a.m.u. allowing an efficient implantation of $^{163}$Ho inside the detectors arrays. The implanter is made by a sputter source, an acceleration section and a magnetic dipole followed by a x-y scanning stage and a focusing electrostatic triplet. In this poster the first results on a beam obtained with a preliminary sputter source are presented.

Less than 5 years of experience since completion of Ph.D N
Student (Ph.D., M.Sc. or B.Sc.) N

Primary authors

Presentation Materials

There are no materials yet.