24–30 May 2015
Europe/Rome timezone
<font color = red>To contact the conference secretariat call:+ 39 0565 974626 / 627 or + 39 3348998639 (for emergency) or send an e-mail to pisameet@pi.infn.it

Parameters of the preproduction series SiPMs for the CMS HCAL Phase I Upgrade

25 May 2015, 16:16
1m
Poster S2 - Photon Detector and PID Photo Detectors and PID - Poster Session

Speaker

Mr Adriaan Heering (University of Notre Dame (US))

Description

The CMS Barrel (HB) and Endcap (HE) Hadron Calorimeters are scintillator sampling calorimeters with embedded wavelength shifting fibers (WLS) in scintillator tiles. The fibers from the sampling layers are ganged together to form towers whose light is currently detected by HPDs. In 2012 the HCAL SiPM photo sensor upgrade was approved for the increased luminosity (5*1034) of SLHC. A key aspect of the upgrade to SiPMs is to add longitudinal segmentation to improve background rejection, energy resolution and scintillator radiation damage compensation. The SiPMs have to operate in a very hostile SLHC radiation environment (1012 n/cm2 ). To ensure good mechanical alignment and handling of large number of production channels (>20 000) we have developed a custom ceramic package. Each package holds 8 channels of SiPMs. Two candidates HPK and KETEK have developed custom large dynamic range SiPMs with large PDE and small ENC for this CMS HCAL Upgrade project. These manufactures produced a preproduction series of 175 Arrays each. Here we report and compare the final SiPM parameters of the 2014 preproduction run including the results of 1400 SiPMs per manufacturer. An overview of our QA results and our measurements of the photon detection efficiency, spectral response, cell recovery time, as well as the results on the radiation hardness will be presented.

Summary

We report and compare the final SiPM parameters of the 2014 preproduction run including the results of 1400 SiPMs per manufacturer. An overview of our QA results and our measurements of the photon detection efficiency, spectral response, cell recovery time, as well as the results on the radiation hardness of SiPMs will be reported in this presentation.

Primary authors

Mr Adriaan Heering (University of Notre Dame (US)) Mr Yuri Musienko (University of Notre Dame)

Co-authors

Mr Mitchell Wayne (University of Notre Dame (US)) Mr Randal Ruchti (University of Notre Dame (US))

Presentation materials