28 September 2020 to 2 October 2020
Online event
Europe/Rome timezone

Machine learning non-Markovian quantum dynamics

Not scheduled
1h 30m
Online event

Online event

Speaker

Prof. Sergey Filippov (Moscow Institute of Physics and Technology, Steklov Mathematical Institute of Russian Academy of Sciences)

Description

Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successively on an open quantum system. This pattern is due to the system-environment interaction and contains information about the relaxation rates as well as non-Markovian memory effects. Here we develop a method to extract the information about the unknown environment from a series of projective single-shot measurements on the system (without resorting to the process tomography). The method is based on embedding the non-Markovian system dynamics into a Markovian dynamics of the system and the effective reservoir of finite dimension. The generator of Markovian embedding is learned by the maximum likelihood estimation. We verify the method by comparing its prediction with an exactly solvable non-Markovian dynamics. The developed algorithm to learn unknown quantum environments enables one to efficiently control and manipulate quantum systems.

Presentation materials

There are no materials yet.