The generation of polarized particle beams still relies on conventional particle accelerators, which are typically very large in scale and budget. Concepts based on laser-driven wake-field acceleration have strongly been promoted during the last decades. Despite many advances in the understanding of fundamental physical phenomena, one largely unexplored issue is how the particle spins are...
This presentation will review the status of ion acceleration at the BELLA petawatt (PW) facility with a large laser spot (f\65) and give an outlook on science enabled by a short-focal length (f\2.5) laser beamline, currently under construction.
Proton beams from the long-focal length beam line exhibit a strongly reduced divergence and increased ion numbers and are hence, ideally suited for...
Laser-driven proton acceleration to high kinetic energies has great potential for applications in e.g. time-resolved radiography or in high-dose radio-biology. To date, however, a strong discrepancy remains between theoretical predictions of the maximum proton energies (Eprot) and the experimental results. Furthermore, a tremendous progress in laser development did not lead to a dramatic...
Laser-driven ion acceleration promises to provide a compact solution for demanding applications like radio-biology experiments. For that, controlling particle beam parameters particularly in experiments with high energy Petawatt class ultra-short pulse systems with high repetition rate is a mandatory, yet challenging task. The performance of the plasma acceleration is strongly dependent on the...
When a multi-terawatt laser pulse is incident onto a nanometer-scale target, strong electron heating and plasma expansion occurs. As the plasma expands, the target experiences a change in electron density which affects the type of interaction occurring. Of particular interest is the regime of relativistic transparency, when the target density drops below the relativistic critical density,...
During the interaction of ultra-intense laser pulses with ultrathin foils, advanced mechanisms of ion acceleration take place which can be controlled and optimized in view of further progress towards high energy ranges of medical relevance on upcoming multi-PW facilities.
In the framework of the activities of the UK-wide A-SAIL project, recent campaigns at the ASTRA GEMINI laser facility...
With the trend towards higher repetition rate laser systems for applications, there is a demand for new, high repetition rate target solutions. This talk will look at efforts to develop shaped, thin, near-critical density gas targets for radiation pressure driven ion acceleration experiments using the high power, $\mathrm{10.6}{\mu m}$ $\mathrm{CO_2}$ laser at Brookhaven National Laboratory....
The gas-foil target combines two domains in laser-plasma acceleration which are normally separate: gas targets are usually used for electron acceleration and solid targets for ion acceleration. The combination of the two thus provides a system of rich physics to explore. We are experimentally investigating this type of target with a focus on ion acceleration. The experiment is done under...
Intense laser irradiation experiments of sub-micrometer scale targets are currently performed at slow shot rates. This limitation is the result of the inability to place such targets quickly and accurately in the focus of the laser. I will present a target setup that enables irradiation at a high rate and sub-wavelength positioning accuracy. Three hundred targets were micro machined and...