5–9 Jun 2023
Genova, Italy
Europe/Rome timezone

The CEvNS experiment at Jefferson Lab

5 Jun 2023, 17:20
20m
DAD - Room 0B (Genova, Italy)

DAD - Room 0B

Genova, Italy

Contributed Hadrons and physics beyond the standard model Hadrons and physics beyond the standard model

Speaker

Stefano Grazzi (Universita' di Messina and INFN)

Description

Coherent elastic neutrino-nucleus scattering (CEνNS) is a process in which MeV energy scale neutrinos scatter on a nucleus, which behaves as a single particle. Within the Standard Model (SM), CEνNS is described by the neutral current interaction of neutrinos and quarks, and, due to the nature of couplings, its cross-section is proportional to the neutron number squared. In 2017, the COHERENT collaboration announced the detection of CEνNS for the first time using a CsI(Na) scintillating crystal detector. The detection of CEνNS has motivated an increasing number of research activities in high-energy physics and in beyond the Standard Model (BSM) physics. It has also motivated the development of larger-scale detectors and technology to extend detectors’ sensitivity into lower energy regimes. In addition to providing a new channel for the detection of neutrinos, there are many interesting physics applications of CEνNS-based experiments and, in particular, a new way to extract information on the weak mixing angle that is of great interest to Jefferson Lab (JLab) research activity. In this contribution, I will report on the studies to perform a CEvNS experiment at JLab. Surveying the neutrino production and fluxes at different positions around the experimental Hall A Beam Dump, we found a Decay-At-Rest (DAR) neutrino flux competitive with other facilities planning CEνNS experiments.

Primary author

Stefano Grazzi (Universita' di Messina and INFN)

Presentation materials