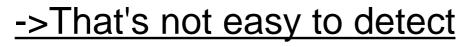
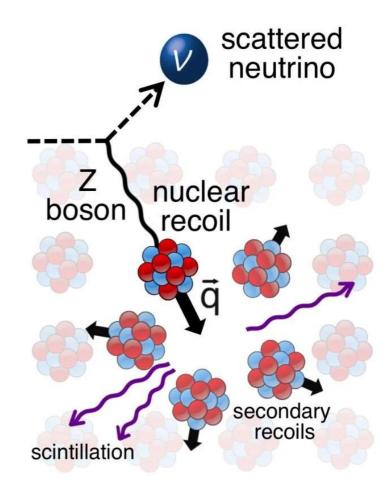
CEvNS at Jefferson Lab

Stefano Grazzi

Università di Messina and INFN Genova

On behalf vBDX collaboration

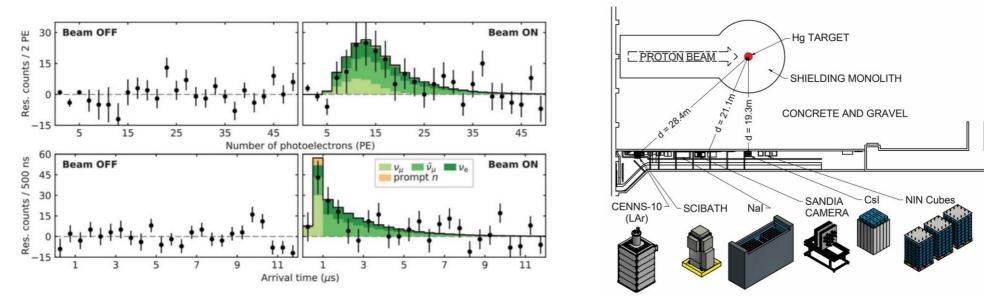

Summary


· CEvNS

- · Physics Interest
- Detection Method
- Neutrino at Jlab
- · Background
- Result

CEvNS

- Coherent elastic neutrino-nucleus scattering, or CEvNS is the process of a low energy neutrino scattering on a nucleus. In the process is exchange a Z₀ boson
- Is coherent because the neutrino interacts with the nucleus as a whole, not with individual nucleons
- Recoil nucleus have small energy, few keV.

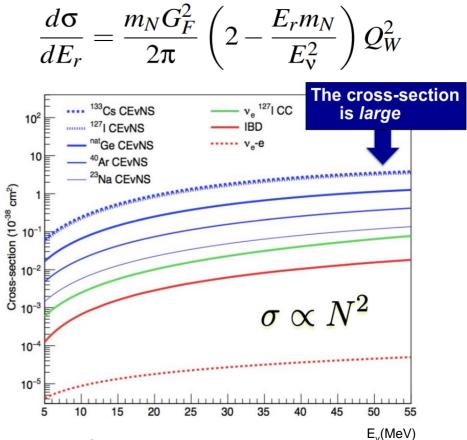


Coherent Experiment

In 2017, the COHERENT collaboration announced the observation in a CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory.

Proton beam of 10²⁰ p/day and a neutrino flux of 10¹¹ v/cm²/s

D. Akimov et al. (COHERENT), Science 357, 1123 (2017), 1708.01294.


CEvNS Cross-Section

- CEvNS cross section is quite large, around 10⁻³⁹ cm².
- It is proportional to coherent weak nuclear charge Qw that quantifies the Z-nucleus vector coupling

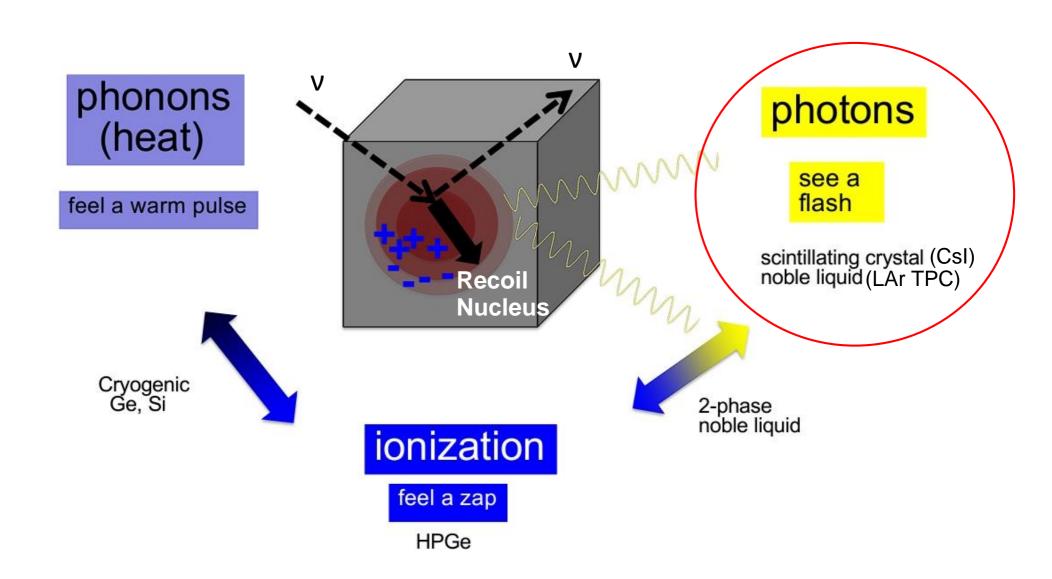
$$Q_W^2 = \left[N g_V^n F_N(q) + Z g_V^p F_Z(q) \right]^2$$

- Proton and neutron charges are define as g^p_ν=1/2 - 2 sin²θ_W (Weinberg angle), gⁿ_ν=-1/2
- $g^p_v \sim 0$

-> cross-section proportional to N^2

Physics Interest I

CevNS is a process sensitive to the **weak mixing angle**

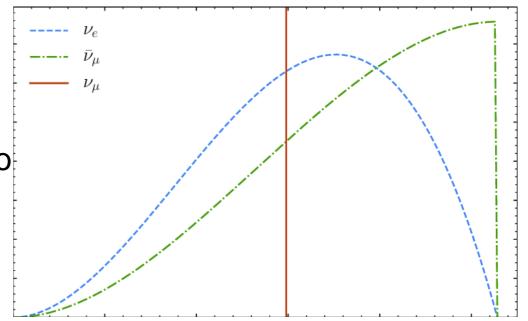

- > θ_w appear in cross-section at tree-level
- RMS radius of the neutron distribution.
- > neutron skin thickness of a nucleus, Δr_{np} (nucleus) = $r_{rms}^{n} r_{rms}^{p}$. Neutrino NSI
- Dark Matter

•

•

> CEvNS background for DM search

Detection Methods



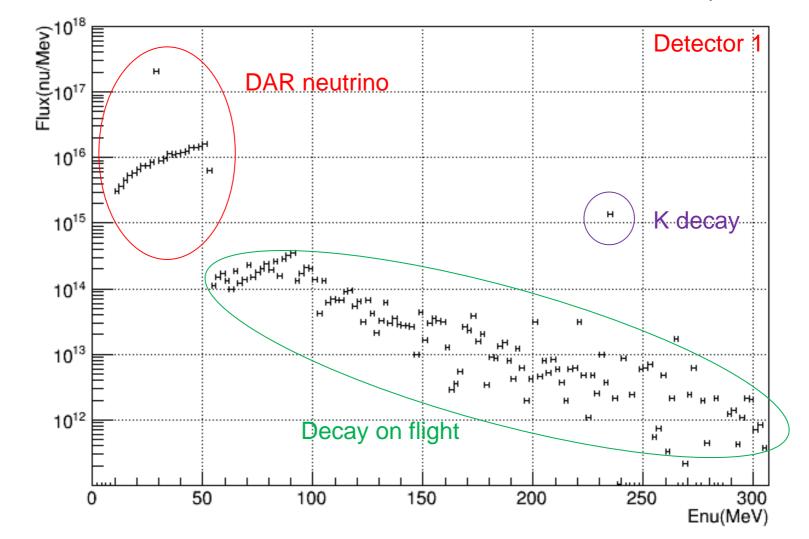
Neutrino at Jlab

- Neutrino production at Jefferson Lab
 - e-beam on Hall A Beam Dump can produces an intense v-beam
 - Electron interact with dump generating $\boldsymbol{\pi}$

 $\begin{aligned} \pi^+ &\to \mu^+ + \nu_\mu & E_\nu \approx 30 \text{ MeV} \\ \mu^+ &\to e^+ + \bar{\nu}_e + \nu_\mu & 0 < E_\nu < 50 \text{ MeV} \end{aligned}$

- π mainly decay (isotropically) at rest (DAR) in μ and ν
- μ decay in 2 v
- π decay on flight produce a small tail of higher energy neutrino

Hall A BD DAR v Energy Spectrum


• Simulation of neutrino fluxes at different positions to identify a suitable place for an detector

Hall A BD DAR v Energy Spectrum

• e-Beam of about 10²² EOT/y can produce 10¹⁸ v/year/m² (mainly DAR)

Integrated neutrino Flux as function of neutrino energy in 1y/m²

Signal Yield at JLab

 Yield calculation need to rewrite CEvNS cross-section introducing the nucleus kinetic energy T_A and threemomentum transfer |q|

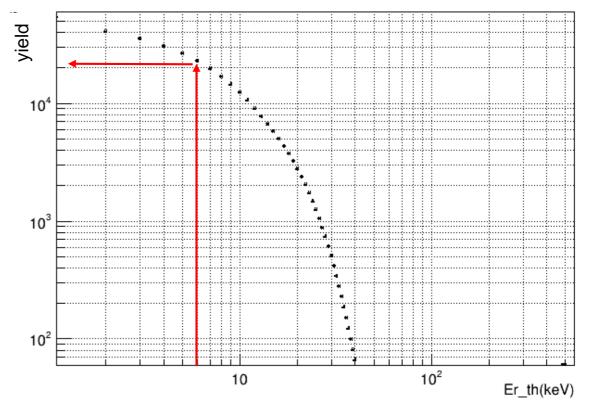
$$\begin{aligned} \frac{d\sigma_{\rm coh}}{dT_A} &\approx \frac{G_F^2 m_A}{\pi} \left(1 - \frac{T_A}{T_A^{\rm max}}\right) |F(q)|^2 \left(g_V^n\right)^2 N^2, \\ &= \left(E_\nu^2 + E_\nu^{'2} - 2E_\nu E_\nu^{'} \cos\theta\right)^{1/2} \simeq (2m_A T_A)^{1/2} \qquad T_A^{\rm max} = \lim_{\cos\theta \to -1} T_A \approx \frac{(2E_\nu - \Delta\varepsilon_{mn})^2}{2m_A}, \end{aligned}$$

• Last important term is the nucleus form factor |F(q)|

|q|

Signal Yield at JLab

|F(q)|² depends on q and change with nucleus • $|F(q)|^2$ 133Cs 1.0 High q, High 127_I differece b/w ⁷⁴Ge 0.8 ⁴⁰Ar nucleus ---- ²⁸S1 $- {}^{19}F$ 0.6---- ¹⁶O -12C0.4 0.2 Low q, Low differece b/w nucleus 0 50 100 150 250 0 200 q, MeV

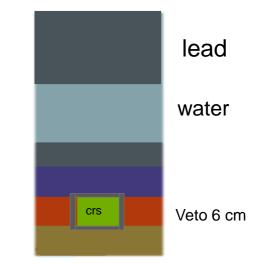

Heavy nuclei form factor drops rapidily but N² dependence still dominates

Signal Yield at JLab

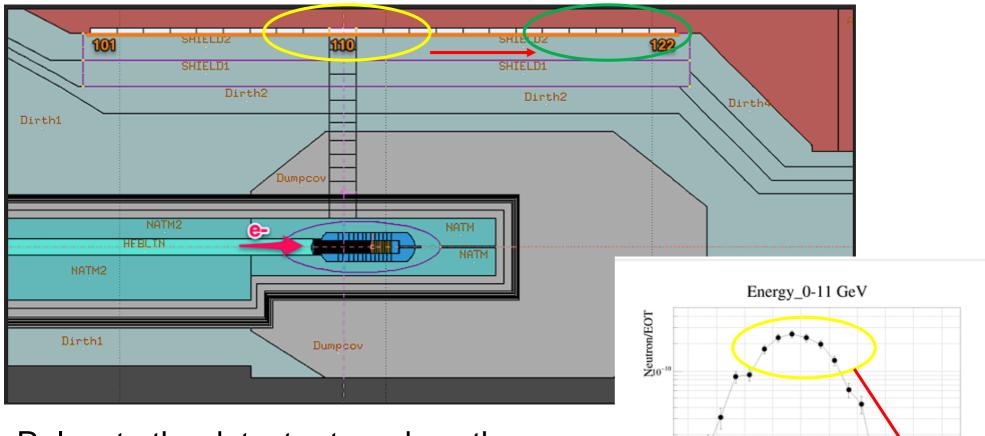
 Deploying a 1 m³ Csl crystal detector (nuBDX experiment)

$$\frac{dR}{dE_r} = V_{\text{det}} \rho(P) \frac{N_A}{m_{\text{molar}}} \int_{E_v^{\text{min}}}^{E_v^{\text{max}}} \frac{d\sigma}{dT_A} \frac{d\Phi}{dE_v} dE_v$$

- The yield depends on the mininum detectable recoil energy E_r
- With 5 KeV treshold 10⁴ CEvNS interactions/y


Background

- Neutron scattering with nuclei is the main Background
- Main neutron source:
 - Cosmic
 - Intrinsic radioactivity
 - Beam related background


Cosmic neutron Shileding

- Cosmic Neutron have wide energy range
 - need Multi-layer shield and veto surrounding the detector.
- Possible to measure cosmic neutron contribution with beam off and subtract it.
- With the an optimized cosmic shield/veto setup

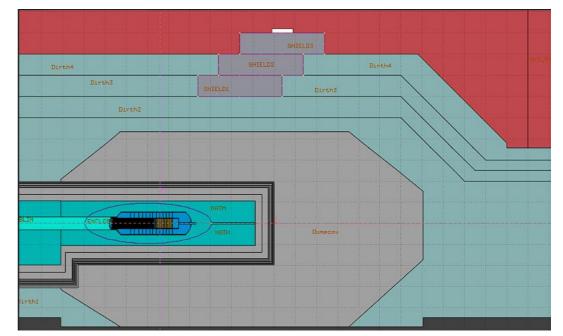
-> 1.7 10⁵ n/y (cosmic)

(Unshielded) Beam-On Background

 10^{-11}

 10^{-12}

Neutron source 500


4200 4400 4600 4800 5000 5200 5400 5600 5800

Relocate the detector to reduce the neutron background

-> 2 order of magnitude less n-yield -> only a factor of 2 reduction for v

Beam-On neutron Shielding

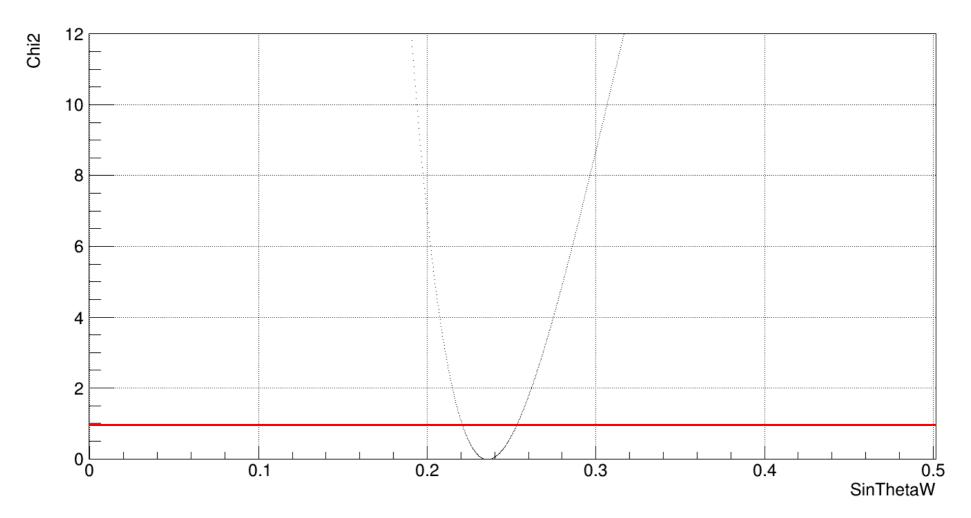
- Continuous Beam -> no time correlation
- Multi-Layer shield and veto below the main detector and detector position optimization
- Sensitive area of the detector (1m3) will be divided into a matrix of smaller crystals -> by studying the multiplicity of hits in the matrix it is possible to filter the neutron events

Optimized Beam-On shield/veto setup -> 2*10⁵ n/y (beam)

Theta Weinberg Reach

Simple single-bin chi-square analysis used to determinate the sensitivity to theta weinberg

$$\chi^2 = \left(rac{N_{\mathrm{Exp}} - (1+\alpha)N_{\mathrm{Theo}}(p)}{\sigma}
ight)^2 + \left(rac{lpha}{\sigma_{lpha}}
ight)^2 \,,$$


N_{Exp} = experimental events

N_{theo} = prediction of underlying hypothesis

$$\sigma = \sqrt{N_{Exp} + B}$$
 statistical uncertainty

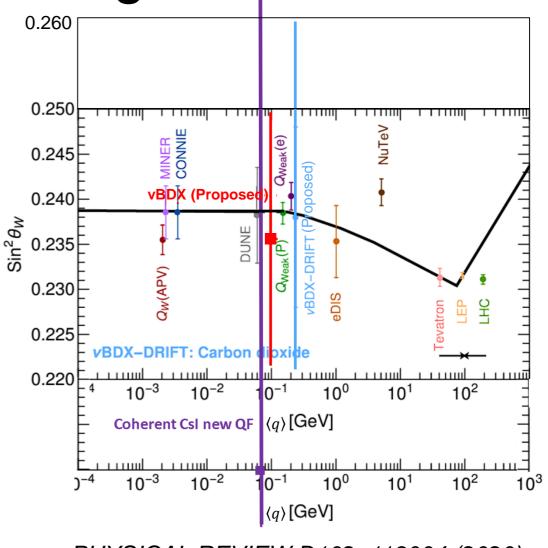
B = Nexp * f background define as a certain fraction of signal $\frac{\alpha}{\sigma_{\alpha}}$ = systematic uncertainty, mainly from Quenching factor

Theta Weinberg Reach

Plot Chi2:

- 1m³ CsI detector and 1 y data taking
- Background/signal ~ 35
- QF ~ 13%
- Detector efficiency = 100%

 $Sin^2\theta_W = 0.2351^{+0.016}_{-0.0143}$


Theta Weinberg Reach

 $Sin^2\theta_W = 0.2351^{+0.016}_{-0.0143}$

The uncertain obtain are mainly influenced by QF as already note in Coherent collaboration analysis

Respect to Coherent, vBDX can achieve a precision that is 4 times better

 $-> \sin^2 \theta_W = 0.209^{+0.072}_{-0.069}$

PHYSICAL REVIEW D102, 113004 (2020)

Comparison with other experiments shows that vBDX can be competitive

Conclusion

- The intense neutrino beam generrated by JLab electron beam and Hall-A beam-dump can be used to study CEvNS
- Weak Mixing angle can be measured with good precision
 - 4 times better that Coherent
- Neutron Background reduction is currently under study and close to optimized veto/shield configuration
- v-BDX reach is competitive respect to other CEvNS experiments