Speaker
Description
We have studied the meson-baryon interaction in the neutral $S=-2$ sector using an extended Unitarized Chiral Perturbation Theory, which takes into account not only the leading Weinberg-Tomozawa term (as all the previous studies in $S=-2$ sector), but also the Born terms and next-to-leading order contribution. Based on the SU(3) symmetry of the chiral Lagrangian we took most of the model parameters from the BCN model [1], where these were fitted to a large amount of experimental data in the neutral $S=-1$ sector.
We have shown that our approach is able to generate dynamically both $\Xi(1620)$ and $\Xi(1690)$ states in very reasonable agreement with the data, and can naturally explain the puzzle with the decay branching ratios of $\Xi(1690)$. Our results clearly illustrate the reliability of chiral models implementing unitarization in coupled channels and the importance of considering Born and NLO contributions for precise calculations.
[1] A. Feijoo, V. Magas and A. Ramos, Phys. Rev. C
99 (2019) no.3, 035211.