

Volodymyr Magas

The Ξ(1620) and Ξ(1690) molecular states from meson-baryon interaction up to next-to-leading order

Collaborators: Albert Feijoo (IFIC, Valencia), Victoria Valcarce (Barcelona)

Chiral Perturbation Theory: (χPT) which is based on effective Lagrangian with hadron d.o.f., which respects the symmetries of QCD, in particular chiral symmetry $SU(3)_R \times SU(3)_L$

Chiral Perturbation Theory: (χPT) which is based on effective Lagrangian with hadron d.o.f., which respects the symmetries of QCD, in particular chiral symmetry $SU(3)_R \times SU(3)_L$

However $_{\chi}PT$ fails in the vicinity of resonances

For example, S=-1 Q=0 sector

Chiral Perturbation Theory: (χPT) which is based on effective Lagrangian with hadron d.o.f., which respects the symmetries of QCD, in particular chiral symmetry $SU(3)_R \times SU(3)_L$

However $_{\chi}PT$ fails in the vicinity of resonances

"New" sector S=-2 Q=0

Chiral Perturbation Theory: (χPT) which is based on effective Lagrangian with hadron d.o.f., which respects the symmetries of QCD, in particular chiral symmetry $SU(3)_R \times SU(3)_L$

However $_{\chi}PT$ fails in the vicinity of resonances

Non-perturbative techniques implementing unitarization in coupled channels are needed

 \Rightarrow Unitary extension of Chiral Perturbation Theory ($U\chi PT$) The pioneering work -- *Kaiser, Siegel, Weise*, NPA594 (1995) 325

Experimental status

 Ξ (1620)* (assumed) $J^P = 1/2^ M = 1610.4 \pm 6.0^{+6.1}_{-4.2}$ MeV, $\Gamma = 59.9 \pm 4.8^{+2.8}_{-7.1}$ MeV _{R.} Aaij, et al., Sci. Bull. 66 (2021) 1278

 Ξ (1690)*** $M = 1692.0 \pm 1.3^{+1.2}_{-0.4}$ MeV, $\Gamma = 25.9 \pm 9.5^{+14.0}_{-13.5}$ MeV M. Sumihama, et al., PRL122 (7) (2019) 072501

Experimental status

 Ξ (1620)* (assumed) $J^P = 1/2^ M = 1610.4 \pm 6.0^{+6.1}_{-4.2}$ MeV, $\Gamma = 59.9 \pm 4.8^{+2.8}_{-7.1}$ MeV _{R.} Aaij, et al., Sci. Bull. 66 (2021) 1278

E(1690)*** $J^P = 1/2^ M = 1692.0 \pm 1.3^{+1.2}_{-0.4}$ MeV, Γ = 25.9 ± $9.5^{+14.0}_{-13.5}$ MeV M. Sumihama, et al., PRL122 (7) (2019) 072501

Are $\Xi(1620)$ and $\Xi(1690)$ molecular states? $\Xi(1620)$ is an "analogy" of $\Lambda(1405)$ state in S=-1 (Q=0) sector Well known for its molecular stucture

Ξ(1690) - experimental puzzle $\Gamma_{\pi\Xi}/\Gamma_{\bar{K}\Sigma} < 0.09$

Experimental status

 Ξ (1620)* (assumed) $J^P = 1/2^ M = 1610.4 \pm 6.0^{+6.1}_{-4.2}$ MeV, $\Gamma = 59.9 \pm 4.8^{+2.8}_{-7.1}$ MeV _{R.} Aaij, et al., Sci. Bull. 66 (2021) 1278

Ξ(1690)*** $M = 1692.0 \pm 1.3^{+1.2}_{-0.4}$ MeV, $\Gamma = 25.9 \pm 9.5^{+14.0}_{-13.5}$ MeV M. Sumihama, et al., PRL122 (7) (2019) 072501

Are \equiv (1620) and \equiv (1690) molecular states? \equiv (1620) is an "analogy" of Λ (1405) state in S=-1 (Q=0) sector Well known for its molecular stucture

Ξ(1690) - experimental puzzle $\Gamma_{\pi\Xi}/\Gamma_{\bar{K}\Sigma} < 0.09$

T. Sekihara, PTEP 2015 (9) (2015) 091Can be understood if $\Xi(1690)$ is a $\overline{K}\Sigma$ quasibound state
with small coupling to $\pi\Xi$

FORMALISM Effective Chiral Lagrangian up to NLO $\mathcal{L}^{eff}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U)$ interaction kernel V_{ij}

System of the algebraic equations

FORMALISM Effective Chiral Lagrangian up to NLO $\mathcal{L}^{eff}(B,U) = \mathcal{L}_{MB}^{(1)}(B,U) + \mathcal{L}_{MB}^{(2)}(B,U)$

LEADING ORDER

 $\mathcal{L}_{MB}^{(1)} = \langle \bar{B}(i\gamma_{\mu}D^{\mu} - M_{0})B \rangle + \frac{1}{2}D\langle \bar{B}\gamma_{\mu}\gamma_{5}\{u^{\mu}, B\} \rangle + \frac{1}{2}F\langle \bar{B}\gamma_{\mu}\gamma_{5}[u^{\mu}, B] \rangle$ $\begin{array}{l} \nabla_{\mu}B = \partial_{\mu}B + [\Gamma_{\mu}, B] \\ \Gamma_{\mu} = \frac{1}{2}(u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger}) \\ U = u^{2} = \exp\left(\frac{i\sqrt{2}\Phi}{f}\right) \\ u_{\mu} = iu^{\dagger}\partial_{\mu}Uu^{\dagger} \end{array} \qquad \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix} \qquad B = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$

FORMALISM Effective Chiral Lagrangian up to NLO $\mathcal{L}^{eff}(B,U) = \mathcal{L}^{(1)}_{MB}(B,U) + \mathcal{L}^{(2)}_{MB}(B,U)$

• LEADING ORDER

$$\mathcal{L}_{MB}^{(1)} = \left\langle \bar{B}(i\gamma_{\mu}D^{\mu} - M_{0})B \right\rangle + \frac{1}{2}D\langle \bar{B}\gamma_{\mu}\gamma_{5}\{u^{\mu}, B\}\rangle + \frac{1}{2}F\langle \bar{B}\gamma_{\mu}\gamma_{5}[u^{\mu}, B]\rangle$$

Dominant contribution

$$V_{ij}^{WT} = -C_{ij} \frac{1}{4f^2} (k^0 + k'^0)$$

The only model parameter is pion decay constant, $f = a f_{\pi}$

FORMALISM Effective Chiral Lagrangian up to NLO $\mathcal{L}^{eff}(B,U) = \mathcal{L}_{MB}^{(1)}(B,U) + \mathcal{L}_{MB}^{(2)}(B,U)$

• LEADING ORDER

$$\mathcal{L}_{MB}^{(1)} = \langle \bar{B}(i\gamma_{\mu}D^{\mu} - M_{0})B \rangle + \frac{1}{2}D\langle \bar{B}\gamma_{\mu}\gamma_{5}\{u^{\mu}, B\} \rangle + \frac{1}{2}F\langle \bar{B}\gamma_{\mu}\gamma_{5}[u^{\mu}, B] \rangle$$
Born terms
$$\bigvee_{ij} \bigvee_{ij} \bigvee_{ij}$$

These depend on the axial vector couplings D and F

$$g_A = D + F = 1.26$$

FORMALISM Effective Chiral Lagrangian up to NLO $\mathcal{L}^{eff}(B,U) = \mathcal{L}_{MB}^{(1)}(B,U) + \mathcal{L}_{MB}^{(2)}(B,U)$

NEXT-TO-LEADING ORDER

$$\mathcal{L}_{\phi B}^{(2)} = b_D \langle \bar{B}\{\chi_+, B\} \rangle + b_F \langle \bar{B}[\chi_+, B] \rangle + b_0 \langle \bar{B}B \rangle \langle \chi_+ \rangle + \\ + d_1 \langle \bar{B}\{u_\mu, [u^\mu, B]\} \rangle + d_2 \langle \bar{B}[u_\mu, [u^\mu, B]] \rangle \qquad \chi = \begin{pmatrix} m_\pi^2 & 0 & 0 \\ 0 & m_\pi^2 & 0 \\ 0 & 0 & 2m_K^2 - m_\pi^2 \end{pmatrix} \\ + d_3 \langle \bar{B}u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B}B \rangle \langle u^\mu u_\mu \rangle$$

7 new parameters: \mathbf{b}_0 , \mathbf{b}_D , \mathbf{b}_F , \mathbf{d}_1 , \mathbf{d}_2 , \mathbf{d}_3 , \mathbf{d}_4

BCN chiral model at NLO Magas. Ramos

S=-1, Q=0 sector

Determinar NLO parameters paying attention to the reactions particularly sensitive to the NLO (for example $\overline{K}N \rightarrow K\overline{2}$) PR C92 (2015) 015206

Born and NLO terms in the Lagrangian appear to play a similar role for the reactions like $\overline{K}N \rightarrow K\Xi$ NP A954 (2016) 58

Studying the constraining effect of isospin filtering reactions especially sensitive to NLO **PR C99** (2019) 035211

Studying the S+P wave meson-baryon interaction

F., Gazda, M., R., Symmetry **13** (2021) 8, 1434

BCN chiral model at NLO

Feijoo, Magas, Valcarce Cadenas

Moving to **S=-2, Q=0** sector

```
"The \Xi(1620) and \Xi(1690) molecular states from S = -2 meson-baryon interaction up to next-to-leading order"
Phys. Lett. B841 (2023) 137927
```

BCN chiral model at NLO S=-2, Q=0 sector

 $\Xi(1620)$ and $\Xi(1690)$ as dynamically generated resonances

The pioneering work -- Ramos, Oset, Bennhold, PRL 89 (2002) 252001

- Garcia-Recio, Lutz, Nieves, Phys. Lett. B 582 (2004) 49
- Gamermann, Garcia-Recio, Nieves, Salcedo, PR D84 (2011) 056017
- T. Sekihara, PTEP 2015 (9) (2015) 091.
- Nishibuchi, Hyodo, EPJ Web Conf. 271 (2022) 10002; arXiv:2305.10753 [hep-ph]

BCN chiral model at NLO S=-2, Q=0 sector

 $\Xi(1620)$ and $\Xi(1690)$ as dynamically generated resonances

Even if **two resonances** are dynamically generated there exists a mutual incompatibility in pinning down **both masses simultaneously**

 $\Gamma_{\Xi(1690)}\approx 1~MeV$

Ξ(1620) can be reproduced very well [Nishibuchi, Hyodo], but only allowing some parameters to take unnatural-size values

BCN chiral model at NLO S=-2, Q=0 sector

 $\Xi(1620)$ and $\Xi(1690)$ as dynamically generated resonances

Even if **two resonances** are dynamically generated there exists a mutual incompatibility in pinning down **both masses simultaneously**

 $\Gamma_{\Xi(1690)}\approx 1~MeV$

Ξ(1620) can be reproduced very well [Nishibuchi, Hyodo], but only allowing some parameters to take unnatural-size values

In all those works only a WT contact term was employed

What if we will add also Born and NLO terms?

 $V_{ij} = V_{ij}^{\scriptscriptstyle WT} + V_{ij}^{direct} + V_{ij}^{crossed} + V_{ij}^{\scriptscriptstyle NLO}$

Role of Born and NLO terms S=-1, Q=0 sector

J. A. Oller and U.-G. Meissner, Phys. Lett. B 500, 263 (2001) Born contributions reach ~20% of the dominant WT contribution just 65 MeV above $\overline{K}N$ threshold (S-wave) \rightarrow The energy range between the lowest and the highest threshold in S=-2 sector is about 410 MeV

Feijoo, Magas, Ramos, PR. C 99, no.3, 035211 (2019), Nucl. Phys. A 954, 58 (2016) At slightly higher energies, the NLO and the Born terms are essential to reproduce the experimental total cross section from $\overline{K}N \rightarrow \eta \Lambda, \eta \Sigma, K\Xi$ processes (η channel thresholds are around 200 MeV above $\overline{K}N$ threshold)

Role of Born and NLO terms S=-1, Q=0 sector

J. A. Oller and U.-G. Meissner, Phys. Lett. B 500, 263 (2001) Born contributions reach ~20% of the dominant WT contribution just 65 MeV above $\overline{K}N$ threshold (S-wave) \rightarrow The energy range between the lowest and the highest threshold in S=-2 sector is about 410 MeV

Feijoo, Magas, Ramos, PR. C 99, no.3, 035211 (2019), Nucl. Phys. A 954, 58 (2016) At slightly higher energies, the NLO and the Born terms are essential to reproduce the experimental total cross section from $\overline{K}N \rightarrow \eta\Lambda, \eta\Sigma, K\Xi$ processes (η channel thresholds are around 200 MeV above $\overline{K}N$ threshold)

New pieces in the interaction kernel will enable new processes (not connected with the WT term) and, thus, we can expect the increase of the $\Xi(1690)$ width

$$V_{ij} = V_{ij}^{WT} + V_{ij}^{direct} + V_{ij}^{crossed} + V_{ij}^{NLO}$$

$$V_{ij} = V_{ij}^{WT} + V_{ij}^{D} + V_{ij}^{C} + V_{ij}^{NLO} \Longrightarrow T = (1 - VG)^{-1}V \Longrightarrow T_{ij}$$

$$Loop function$$

$$G_l = i2M_l \int \frac{d^4q}{(2\pi)^4} \frac{1}{(P-q)^2 - M_l^2 + i\epsilon} \frac{1}{q^2 - m_l^2 + i\epsilon}$$

$$V_{ij} = V_{ij}^{WT} + V_{ij}^{D} + V_{ij}^{C} + V_{ij}^{NLO} \Longrightarrow T = (1 - VG)^{-1}V \Longrightarrow T_{ij}$$

$$Loop function$$

$$G_l = i2M_l \int \frac{d^4q}{(2\pi)^4} \frac{1}{(P-q)^2 - M_l^2 + i\epsilon} \frac{1}{q^2 - m_l^2 + i\epsilon}$$

Dimensional regularization :

$$V_{ij} = V_{ij}^{WT} + V_{ij}^{D} + V_{ij}^{C} + V_{ij}^{NLO} \Longrightarrow T = (1 - VG)^{-1}V \Longrightarrow T_{ij}$$

$$Loop function$$

$$G_l = i2M_l \int \frac{d^4q}{(2\pi)^4} \frac{1}{(P-q)^2 - M_l^2 + i\epsilon} \frac{1}{q^2 - m_l^2 + i\epsilon}$$

Dimensional regularization :

 $a_l(\mu) \simeq -2$ → "natural size" (µ=630 MeV) [Oller and Meissner, PL B500 (2001) 263] In our study we will allow **a**'s to vary within [-3.5,-1]

$$V_{ij} = V_{ij}^{WT} + V_{ij}^{D} + V_{ij}^{C} + V_{ij}^{NLO} \Longrightarrow T = (1 - VG)^{-1}V \Longrightarrow T_{ij}$$

Model parameters for S=-2, Q=0 sector

$$V_{ij} = V_{ij}^{WT} + V_{ij}^{D} + V_{ij}^{C} + V_{ij}^{NLO} \Longrightarrow T = (1 - VG)^{-1}V \Longrightarrow T_{ij}$$

Model parameters for S=-2, Q=0 sector

Chiral Lagrangian is SU(3) symmetric

Model parameters fitted in S=-1 sector can be used

- Axial vector couplings: **D**, **F**
- 7 coefficients of the NLO lagrangian terms:
 b₀, b_D, b_F, d₁, d₂, d₃, d₄

- Pion decay constant $f = a f_{\pi}$
 - Model 1: a = 1.197 (fixed by BCN model)
 - Model 2: a ϵ [1.19, 2.1] (constrained by the error band of **BCN model**)
- 4 subtracting constants (isospín symmetry): $a_{\pi\Xi}$, $a_{\bar{K}\Lambda}$, $a_{\bar{K}\Sigma}$, $a_{\eta\Xi}$ constrained within [-3.5,-1]

Fitting model parameters

Table 2: Values of the parameters for the different models described in the text. The subtraction constants are taken at a regularization scale $\mu = 630$ MeV.

	Model I	Model II	
$a_{\pi\Xi}$	-2.7981	-2.7228	
$a_{\bar{K}\Lambda}$	-1.0071	-1.0000	
$a_{\bar{K}\Sigma}$	-3.0938	-2.9381	
$a_{\eta\Xi}$	-3.2665	-3.3984	
f/f_{π}	1.197 (fixed [1])	1.204	
			(2023) 13792
		Phys. Lett. B841	(2020)

2 dynamical generated resonances !

Model I	Ξ(1620)		Ξ(1690)	
M [MeV]	1599.95		1683.04	
Γ [MeV]	158.88		11.51	
	gi	gi	g_i	$ g_i $
$\pi^+ \Xi^-$	1.70 + i0.78	1.87	0.44 + i0.07	0.45
$\pi^{0}\Xi^{0}$	-1.22 - i0.62	1.37	0.08 - i0.10	0.13
$\bar{K}^0\Lambda$	-2.11 - i0.08	2.11	0.50 - i0.06	0.51
$K^-\Sigma^+$	0.81 - i0.22	0.84	1.0 - i0.16	1.01
$\bar{K}^0 \Sigma^0$	-0.41 + i0.28	0.50	-1.34 + i0.26	1.37
$\eta \Xi^0$	-0.23 + i0.13	0.26	-0.74 + i0.13	0.76

Model II	Ξ(1620)		Ξ(1690)	
M [MeV]	1608.51		1686.17	
Γ [MeV]	170.00		29.72	
	gi	$ g_i $	gi	$ g_i $
$\pi^+ \Xi^-$	1.73 + i0.85	1.93	0.51 + i0.25	0.57
$\pi^0 \Xi^0$	-1.24 - i0.67	1.41	0.09 - i0.06	0.11
$\bar{K}^0\Lambda$	-2.12 - i0.09	2.12	0.81 - i0.02	0.81
$K^-\Sigma^+$	0.8 - i0.25	0.84	1.36 + i0.10	1.36
$\bar{K}^0 \Sigma^0$	-0.36 + i0.31	0.48	-1.99 + i0.08	1.99
$\eta \Xi^0$	-0.20 + i0.12	0.24	-1.04 + i0.06	1.04

 $\pi \Xi$ spectrum: $q_{\pi} \mid \sum_{i} T_{i \to \pi \Xi} \mid^2$

 $M = 1610.4 \pm 6.0^{+5.9}_{-3.5} \text{ MeV}, \Gamma = 59.9 \pm 4.8^{+2.8}_{-3.0} \text{ MeV}$ R. Aaij, et al., Sci. Bull. 66 (2021) 1278

Results E(1690) branching ratios

E(1690) BRANCHING RATIOS

Workman, et al., Review of Particle Physics, PTEP 2022 (2022) 083C01

$\Gamma(\Lambda \overline{K})/\Gamma_{\text{total}}$						Г1/Г
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
seen	104	BIAGI	87	SPEC	-	Ξ^- Be 116 GeV
$\Gamma(\Sigma\overline{K})/\Gamma(\Lambda\overline{K})$						Γ_2/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.75 ± 0.39	75	ABE	0 2C	BELL		e $^+$ e $^-pprox~~\gamma(4S)$
2.7 ±0.9		DIONISI	78	HBC	0	K ⁻ p 4.2 GeV/c
3.1 ± 1.4		DIONISI	78	HBC	_	<i>К[—] р</i> 4.2 GeV/ <i>c</i>
$\Gamma(\Xi\pi)/\Gamma(\Sigma\overline{K})$						Γ_3/Γ_2
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
<0.09		DIONISI	78	HBC	0	К [—] р 4.2 GeV/с

Results E(1690) branching ratios

E(1690) BRANCHING RATIOS

Workman, et al., Review of Particle Physics, PTEP 2022 (2022) 083C01

$\Gamma(\Lambda \overline{K}) / \Gamma_{\text{total}}$						Г1/Г
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
seen	104	BIAGI	87	SPEC	_	Ξ^- Be 116 GeV
$\Gamma(\Sigma\overline{K})/\Gamma(\Lambda\overline{K})$						Γ_2/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.75 ± 0.39	75	ABE	0 2C	BELL		e $^+$ e $^-pprox~\Upsilon(4S)$
2.7 ±0.9		DIONISI	78	HBC	0	К [—] р 4.2 GeV/с
3.1 ± 1.4		DIONISI	78	HBC	_	<i>К[—] р</i> 4.2 GeV/ <i>c</i>
$\Gamma(\Xi\pi)/\Gamma(\Sigma\overline{K})$						Γ ₃ /Γ ₂
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
<0.09		DIONISI	78	HBC	0	<i>К[—] р</i> 4.2 GeV/ <i>c</i>
$rac{\Gamma^{\pi\Xi}_{\Xi(1690)}}{\Gamma^{\bar{K}\Sigma}_{\Xi(1690)}} = 0.25$		Model II		$\frac{\Gamma_{\Xi}^{\bar{K}}}{\Gamma_{\Xi}^{\bar{K}}}$	${\Sigma \over (1690)} {(1690)} {\Lambda \over (1690)}$	- = 3.22

meson-baryon interaction in the S=-2 (Q=0) sector within an extended UChPT scheme for the first time

$$V_{ij} = V_{ij}^{\scriptscriptstyle WT} + V_{ij}^{direct} + V_{ij}^{crossed} + V_{ij}^{\scriptscriptstyle NLO}$$

- Our model is able to generate dynamically both $\Xi(1620)$ and $\Xi(1690)$ states at the same time in a very reasonable agreement with exp. data

meson-baryon interaction in the S=-2 (Q=0) sector within an extended UChPT scheme for the first time

$$V_{ij} = V_{ij}^{\scriptscriptstyle WT} + V_{ij}^{direct} + V_{ij}^{crossed} + V_{ij}^{\scriptscriptstyle NLO}$$

- Our model is able to generate dynamically both $\Xi(1620)$ and $\Xi(1690)$ states at the same time in a very reasonable agreement with exp. data

Reliability of the chiral models with unitarization in coupled channels

Importance of considering Born and NLO contributions for precise calculations

meson-baryon interaction in the S=-2 (Q=0) sector within an extended UChPT scheme for the first time

 $V_{ij} = V_{ij}^{\scriptscriptstyle WT} + V_{ij}^{\scriptstyle direct} + V_{ij}^{\scriptscriptstyle crossed} + V_{ij}^{\scriptscriptstyle NLO}$

- Our model is able to generate dynamically both $\Xi(1620)$ and $\Xi(1690)$ states at the same time in a very reasonable agreement with exp. data

Most of the model parameters have been assumed to be **SU(3)** symmetric and were taken from the BCN model fit in **S=-1** sector

Ref. [PR **C99** (2019) 035211] gives a **trustable set** of **NLO parameters**

meson-baryon interaction in the S=-2 (Q=0) sector within an extended UChPT scheme for the first time

$$V_{ij} = V_{ij}^{\scriptscriptstyle WT} + V_{ij}^{direct} + V_{ij}^{crossed} + V_{ij}^{\scriptscriptstyle NLO}$$

- Our model is able to generate dynamically both $\Xi(1620)$ and $\Xi(1690)$ states at the same time in a very reasonable agreement with exp. data
 - Work in progress
 - $\pi \Xi$ spectrum for $\Xi_c^+ \Rightarrow \Xi^- \pi^+ \pi^+$

Back up

Eq. (17) [Geng, Oset, Doring, Eur. Phys. J. A 32 (2007) 201]

Table 4 Effective range, r_{eff} , and scattering length, a_0 , for $\bar{K}^0\Lambda$ threshold.

	Model I	Model II
$a_0^{\bar{K}^0\Lambda}$	-0.155 + i 0.501	-0.115 + i 0.495
$r_{eff}^{K^0\Lambda}$	-0.408 - i 0.413	-0.507 - i 0.205

Phys. Lett. **B841** (2023) 137927