05–09 giu 2023
Genova, Italy
Europe/Rome fuso orario

Understanding the nature of baryon resonances

6 giu 2023, 10:00
30m
San Salvatore Auditorium (Genova, Italy)

San Salvatore Auditorium

Genova, Italy

Plenary Plenary Plenary

Relatore

Derek Leinweber (CSSM, University of Adelaide)

Descrizione

This presentation will open with a brief review of lattice QCD calculations showing the 2s radial excitation of the nucleon sits at ~1.9 GeV, well above the Roper resonance position. We’ll then proceed to reconcile this observation with experimental scattering data, gaining insight into the interplay between quark-model states, meson-baryon interactions and the nature of baryon resonances.

While the idea of dressing quark-model states in a coupled-channel analysis to describe scattering data has been around for decades, it's now possible to bring these descriptions to the finite-volume of lattice QCD for confrontation with lattice-QCD calculations. This combination of lattice QCD and experiment demands that we reconsider our preconceived notions about the quark-model and its excitation spectrum.

Herein, the infinite volume world of experiment and the finite-volume world of lattice-QCD are bridged by Hamiltonian effective field theory (HEFT), a nonperturbative extension of effective field theory incorporating the Luscher formalism. After presenting the formalism in the context of the Delta resonance, we'll explore the low-lying odd-parity nucleon resonances where two nearby quark-model like states introduce new challenges. The results lead to a consideration of the even-parity Roper resonance and its isospin-3/2 Delta-resonance partner.

The presentation will close with the results of a new calculation hinting the 2s radial excitation of the nucleon is associated with the N1/2+(1880) resonance observed in photoproduction. The impact of this on the missing baryon resonances problem will be discussed.

Autore principale

Derek Leinweber (CSSM, University of Adelaide)

Materiali di presentazione

Revisione tra pari

Paper