Speaker
Description
In this work, we interpret the newly observed $\eta_1(1855)$ resonance with exotic $J^{PC}=1^{-+}$ quantum numbers in the $I=0$ sector, reported by the BESIII Collaboration, as a dynamically generated state from the interaction between the lightest pseudoscalar mesons and axial-vector mesons. The interaction is derived from the lowest order chiral Lagrangian from which the Weinberg-Tomozawa term is obtained, describing the transition amplitudes among the relevant channels, which are then unitarized using the Bethe-Salpeter equation, according to the chiral unitary approach. We evaluate the $\eta_1(1855)$ decays into the $\eta\eta^{\prime}$ and $K\bar{K}^*\pi$ channels and find that the latter has a larger branching fraction. We also investigate its SU(3) partners, and according to our findings, the $\pi_1(1400)$ and $\pi_1(1600)$ structures may correspond to dynamically generated states, with the former one coupled mostly to the $b_1\pi$ component and the latter one coupled to the $K_1(1270)\bar{K}$ channel. In particular, our result for the ratio $\Gamma(\pi_1(1600)\to f_1(1285)\pi)/ \Gamma(\pi_1(1600)\to \eta^{\prime}\pi)$ is consistent with the measured value, which supports our interpretation for the higher $\pi_1$ state. We also report two poles with a mass about 1.7~GeV in the $I=1/2$ sector, which may be responsible for the $K^*(1680)$. We suggest searching for two additional $\eta_1$ exotic mesons with masses around 1.4 and 1.7~GeV. In particular, the predicted $\eta_1(1700)$ is expected to have a width around 0.1~GeV and can decay easily into $K\bar K\pi\pi$.