



### On the molecular $\eta_1(1855)$ and its SU(3) partners

#### Mao-Jun Yan

#### In collaboration with J. Dias, A. Guevara, F.K. Guo and B.S. Zou

Institute of Theoretical Physics, Chinese Academy of Sciences

June 5-9, 2023, Genova

### Outline

### 1 Motivation

### Molecular candidate $\eta_1(1855)$

- Leading order interaction in  $\chi PT$  and unitarization
- Including meson width in the scattering
- Two-body decay in  $R\chi T$
- Isoscalar partners of  $\eta_1(1855)$

### **3** SU(3) partners of $\eta_1(1855)$ in I=1, 1/2 sectors

### Summary

### **Motivation**

#### **Observation and explanations on** $\eta_1(1855)$

- $\eta_1(1855)$  reported with mass and width are  $1855\,{
  m MeV}$  and  $188\,{
  m MeV}$  and decays into  $\eta\eta'$ . BESIII, PRL.129 (2022)
- Hybrid\_{latt.:  $m\sim 2.00/2.24\,{
  m GeV}$ , Had. Spec. PRD88(2013), F. Chen et al,PRD 107 (2023)
- Hybrid<sub>theo</sub>: L. Qiu et al, CPC46 (2022); H.X. Chen et al, CPL39 (2022); V. Shastry et al, PLB834(2022);
   E.Swanson, PRD107(2023); B. Chen et al, 2302.06785
- Tetraquark: B. D. Wan et al, PRD106 (2022)
- $K_1(1400)\bar{K}$  form  $\eta_1(1855)$  in OBE, X.K. Dong et al, Sci.China Phys.Mech 65 (2022)

#### **Observation and explanations on** $\pi_1(1600)$

- $\pi_1(1600)$  is firstly reported in  $\pi^- p o 3\pi p$ , BNL-E0852,PRL81(1998)
- $\pi_1(1600)$  decays into  $\rho\pi$  in P-wave, compass, prd105(2022).
- $(K^*\bar{K})_{f_1(1285)}\pi$  in Fixed Center Approach, X. Zhang et al, PRD95(2017)

### Molecular candidate $\eta_1(1855)$ : LO $\chi$ PT

#### Weinberg-Tomozawa term

$$\mathcal{L}_{I} = -\frac{1}{4f_{\pi}^{2}} \langle [\Phi^{\mu}, \partial^{\nu} \Phi_{\mu}] [\phi, \partial_{\nu} \phi] \rangle, \ \Phi^{8} = \{A_{1}, B_{1}\}.$$

There are mixtures in physical mesons,

$$\begin{split} \eta &= \cos\theta_{\rm P}\eta^8 - \sin\theta_{\rm P}\eta^1, \\ \eta' &= \sin\theta_{\rm P}\eta^8 + \cos\theta_{\rm P}\eta^1, \\ f_1(1285) &= \cos\theta_{3{\rm P}_1}f_1^1 + \sin\theta_{3{\rm P}_1}f_1^8, \\ f_1(1420) &= -\sin\theta_{3{\rm P}_1}f_1^1 + \cos\theta_{3{\rm P}_1}f_1^8, \\ h_1(1170) &= \cos\theta_{1{\rm P}_1}h_1^1 + \sin\theta_{1{\rm P}_1}h_1^8, \\ h_1(1415) &= -\sin\theta_{1{\rm P}_1}h_1^1 + \cos\theta_{1{\rm P}_1}h_1^8, \\ K_1(1270) &= K_{1A}\sin\theta_{K_1} + K_{1B}\cos\theta_{K_1}, \\ K_1(1400) &= K_{1A}\cos\theta_{K_1} - K_{1B}\sin\theta_{K_1}. \end{split}$$

|         | $\theta_{K_1}$ | $\theta_{^{3}P_{1}}$ | $\theta_{^1P_1}$ | $\theta_P$    |
|---------|----------------|----------------------|------------------|---------------|
| Set – A | 57°            | 52.0°                | $-17.5^{\circ}$  | $-17^{\circ}$ |
| Set – B | 34°            | $23.1^{\circ}$       | 28.0°            | $-17^{\circ}$ |

The mixing angles  $\theta_{K1, {}^{1}P_{1}, {}^{3}P_{1}}$  are correlated in Ref. H.Y. Cheng, PLB707(2012)

# Molecular candidate $\eta_1(1855)$ : ChUA

#### **Bethe-Salpeter equation**

$$T = \left[1 + V\hat{G}\right]^{-1} (-V) \vec{\epsilon} \cdot \vec{\epsilon}',$$

with

$$\begin{array}{lcl} V_{ij}(s) & = & -\frac{\epsilon \cdot \epsilon'}{8f_{\pi}^2} C_{ij} \left[ 3s - \left( M^2 + m^2 + {M'}^2 + {m'}^2 \right) \right. \\ & & \left. -\frac{1}{s} \left( M^2 - m^2 \right) \left( M'^2 - {m'}^2 \right) \right], \\ \hat{G} & = & G \left( 1 + \frac{1}{3} \frac{q_j^2}{M_j^2} \right) \end{array}$$

where G is dimensional regularized without finite widths of propagated  $\Phi$ . M and m indicate  $\Phi$  and  $\phi$  masses, respectively.  $C_{ij}$  are the coefficients derived from the isospin basis.

| C <sub>ij</sub>  | $a_1\pi$ | $K_1(1270)\bar{K}$                     | $f_1(1285)\eta$                                        | $K_1(1400)ar{K}$                                        | $f_1(1420)\eta$                                         |
|------------------|----------|----------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $a_1\pi$         | -4       | $\sqrt{\frac{3}{2}} \sin \theta_{K_1}$ | 0                                                      | $\sqrt{\frac{3}{2}}\cos\theta_{K_1}$                    | 0                                                       |
| $K_1(1270)ar{K}$ |          | -3                                     | $-\frac{3}{\sqrt{2}}\sin\theta_{3P_1}\sin\theta_{K_1}$ | 0                                                       | $-\frac{3}{\sqrt{2}}\cos\theta_{^3P_1}\sin\theta_{K_1}$ |
| $f_1(1285)\eta$  |          |                                        | 0                                                      | $-\frac{3}{\sqrt{2}}\cos\theta_{K_1}\sin\theta_{^3P_1}$ | 0                                                       |
| $K_1(1400)ar{K}$ |          |                                        |                                                        | -3                                                      | $-\frac{3}{\sqrt{2}}\cos\theta_{^3P_1}\cos\theta_{K_1}$ |
| $f_1(1420)\eta$  |          |                                        |                                                        |                                                         | 0                                                       |

| C <sub>ij</sub>  | $a_1\pi$ | $K_1(1270)\bar{K}$                     | $f_1(1285)\eta$                                        | $K_1(1400)\overline{K}$                                 | $f_1(1420)\eta$                                         |
|------------------|----------|----------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $a_1\pi$         | -4       | $\sqrt{\frac{3}{2}} \sin \theta_{K_1}$ | 0                                                      | $\sqrt{\frac{3}{2}}\cos\theta_{K_1}$                    | 0                                                       |
| $K_1(1270)ar{K}$ |          | -3                                     | $-\frac{3}{\sqrt{2}}\sin\theta_{3P_1}\sin\theta_{K_1}$ | 0                                                       | $-\frac{3}{\sqrt{2}}\cos\theta_{^3P_1}\sin\theta_{K_1}$ |
| $f_1(1285)\eta$  |          |                                        | 0                                                      | $-\frac{3}{\sqrt{2}}\cos\theta_{K_1}\sin\theta_{^3P_1}$ | 0                                                       |
| $K_1(1400)ar{K}$ |          |                                        |                                                        | -3                                                      | $-\frac{3}{\sqrt{2}}\cos\theta_{^3P_1}\cos\theta_{K_1}$ |
| $f_1(1420)\eta$  |          |                                        |                                                        |                                                         | 0                                                       |

| Poles (Set A)   |                      | Channels             |                 |                         |                      |
|-----------------|----------------------|----------------------|-----------------|-------------------------|----------------------|
| 1.84            | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\overline{K}$ | $f_1(1420)\eta$      |
| - <i>i</i> 0.03 |                      |                      |                 |                         |                      |
| (++)            |                      |                      |                 |                         |                      |
| gı              | 0.07 + <i>i</i> 0.28 | 0.69 + <i>i</i> 0.55 | 1.68 + i0.08    | 9.33 + i0.15            | 1.16 - <i>i</i> 0.06 |
| Poles (Set B)   |                      | Channels             |                 |                         |                      |
| 1.84            | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\overline{K}$ | $f_1(1420)\eta$      |
| - <i>i</i> 0.03 |                      |                      |                 |                         |                      |
| (++)            |                      |                      |                 |                         |                      |
| gı              | 0.15 + <i>i</i> 0.62 | 0.33 – <i>i</i> 0.27 | 1.83 + i0.09    | 9.05 + i0.17            | 3.81 - <i>i</i> 0.20 |

### Including meson width in the scattering



•  $M_i \rightarrow M_i - i\Gamma_i/2$  in G-loop.

• Peaks and FWHM:  $(1.84, 0.16)^A$  and  $(1.85, 0.18)^B$  GeV.

### Two-body decay in $R\chi T$



$$\mathcal{L} = g \left[ \langle A_{\mu\nu} \left( u^{\mu} u_{\alpha} h^{\nu\alpha} + h^{\nu\alpha} u_{\alpha} u^{\mu} \right) \rangle + \langle A_{\mu\nu} \left( u_{\alpha} u^{\mu} h^{\nu\alpha} + h^{\nu\alpha} u^{\mu} u_{\alpha} \right) \rangle + \langle A_{\mu\nu} \left( u^{\mu} h^{\nu\alpha} u_{\alpha} + u_{\alpha} h^{\nu\alpha} u^{\mu} \right) \rangle \right],$$

$$\mathcal{M}_{\eta_{1} \to \eta\eta'} = -\frac{4m_{\eta_{1}}^{2}}{3F_{\pi}^{3}m_{K_{1}}} gg_{K_{1}\bar{K}} G \left[ \left( \alpha p_{\eta'}^{2} + \frac{1}{\sqrt{2}} \beta p_{\eta}^{2} \right) \varepsilon_{\eta_{1}} \cdot p_{\eta} + \left( p_{\eta} \leftrightarrow p_{\eta'} \right) \right],$$

$$\Gamma_{\eta\eta'} = (19 \pm 4 \,\mathrm{MeV})^{A} \text{ or } (7 \pm 2 \,\mathrm{MeV})^{B},$$

$$\alpha = \cos 2\theta_{P} + 2\sqrt{2} \sin 2\theta_{P}, \beta = 2\sqrt{2} \cos 2\theta_{P} - \sin 2\theta_{P}, g = 0.025 \,\mathrm{GeV}^{-1}.$$
J.A. Miranada et al. PRD 102(2020), 2007, 11019.

### Three-body decay



• 
$$\mathcal{M}_{3B} = g_{K_1(1400)\bar{K}} \left( -g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{M_{K_1}^2} \right) \frac{1}{p^2 - M_{K_1}^2 + i M_{K_1}\Gamma_{K_1}} g_{K^*\pi} \varepsilon_{\eta_1}^{\mu} \varepsilon_{K^*}^{\nu}$$
  
•  $\frac{d\Gamma}{dM_{K_1\bar{K}}} = \frac{1}{(2\pi)^3} \frac{p_K \tilde{p_\pi}}{4M_{\eta_1}^2} |\mathcal{M}_{3B}|^2 \frac{1}{2J+1}$   
•  $\Gamma_{3B} = \left( 81^{+11}_{-24} \text{MeV} \right)^A, \ \Gamma_{3B} = \left( 74^{+12}_{-24} \text{MeV} \right)^B.$   
•  $\frac{\Gamma_{2B}}{\Gamma_{3B}} = \left( 0.23^{-0.08}_{+0.16} \right)^A \text{ or } \left( 0.10^{-0.03}_{+0.08} \right)^B.$ 

June 5-9, 2023, Genova

10/19

### Isoscalar partners of $\eta_1(1855)$

| Poles (Set A)                      |                      | Channels             |                 |                         |                      |
|------------------------------------|----------------------|----------------------|-----------------|-------------------------|----------------------|
| $1.39 \pm 0.01 - i(0.04 \pm 0.01)$ | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\bar{K}$      | $f_1(1420)\eta$      |
| (-+++)                             |                      |                      |                 |                         |                      |
| gı                                 | 5.21 + i3.01         | 1.22 + i0.78         | 0.01 + i0.02    | 0.36 + <i>i</i> 0.35    | 0.00                 |
| (1.39, 0.24)                       |                      |                      |                 |                         |                      |
| $1.69\pm0.03$                      | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\bar{K}$      | $f_1(1420)\eta$      |
| (-+++)                             |                      |                      |                 |                         |                      |
| gı                                 | 0.36 + <i>i</i> 0.98 | 8.16 <i>— i</i> 0.17 | 3.64 + i0.01    | 0.09 - <i>i</i> 0.15    | 2.46 + i0.01         |
| (1.69, 0.08)                       |                      |                      |                 |                         |                      |
| $1.84\pm0.03$                      | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\overline{K}$ | $f_1(1420)\eta$      |
| (++)                               |                      |                      |                 |                         |                      |
| gı                                 | 0.07 + <i>i</i> 0.28 | 0.69 + i0.55         | 1.68 + i0.08    | 9.33 + <i>i</i> 0.15    | 1.16 + i0.06         |
| (1.84, 0.16)                       |                      |                      |                 |                         |                      |
| Poles (Set B)                      |                      | Channels             |                 |                         |                      |
| $1.39 \pm 0.01 - i(0.04 \pm 0.01)$ | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\bar{K}$      | $f_1(1420)\eta$      |
| (-+++)                             |                      |                      |                 |                         |                      |
| gı                                 | 5.21 + <i>i</i> 3.03 | 0.81 + i0.53         | 0.00            | 0.55 + <i>i</i> 0.54    | 0.00                 |
| (1.42, 0.34)                       |                      |                      |                 |                         |                      |
| $1.70\pm0.02$                      | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\overline{K}$ | $f_1(1420)\eta$      |
| (-+++)                             |                      |                      |                 |                         |                      |
| gı                                 | 0.25 + i0.67         | 8.34 <i>– i</i> 0.08 | 1.27 - i0.01    | 0.37 + i0.17            | 2.58 – <i>i</i> 0.01 |
| (1.70, 0.10)                       |                      |                      |                 |                         |                      |
| $1.84\pm0.03$                      | $a_1\pi$             | $K_1(1270)\bar{K}$   | $f_1(1285)\eta$ | $K_1(1400)\bar{K}$      | $f_1(1420)\eta$      |
| (++)                               |                      |                      |                 |                         |                      |
| gı                                 | 0.15 + <i>i</i> 0.62 | 0.33 - <i>i</i> 0.27 | 1.83 + i0.09    | 9.05 + i0.17            | 3.81 - <i>i</i> 0.20 |
| (1.85, 0.18)                       |                      |                      |                 |                         |                      |

| C <sub>ij</sub>         | $b_1\pi$ | $f_1(1285)\pi$ | $f_1(1420)\pi$ | $K_1(1270)\overline{K}$                                | $a_1\eta$                             | $K1(1400)\overline{K}$                                 |
|-------------------------|----------|----------------|----------------|--------------------------------------------------------|---------------------------------------|--------------------------------------------------------|
| $b_1\pi$                | -2       | 0              | 0              | $\cos \theta_{K_1}$                                    | 0                                     | $-\sin \theta_{\kappa_1}$                              |
| $f_1(1285)\pi$          |          | 0              | 0              | $\sqrt{\frac{3}{2}}\sin\theta_{K_1}\sin\theta_{^3P_1}$ | 0                                     | $\sqrt{\frac{3}{2}}\cos\theta_{K_1}\sin\theta_{^3P_1}$ |
| $f_1(1420)\pi$          |          |                | 0              | $\sqrt{\frac{3}{2}}\cos	heta_{^3P_1}\sin	heta_{K_1}$   | 0                                     | $\sqrt{\frac{3}{2}}\cos\theta_{K_1}\cos\theta_{^3P_1}$ |
| $K_1(1270)\overline{K}$ |          |                |                | -1                                                     | $-\sqrt{\frac{3}{2}}\sin\theta_{K_1}$ | 0                                                      |
| $a_1\eta$               |          |                |                |                                                        | 0                                     | $-\sqrt{\frac{3}{2}}\cos\theta_{K_1}$                  |
| $K_1(1400)\bar{K}$      |          |                |                |                                                        |                                       | -1                                                     |

| Channel   | $b_1\pi$ | $f_1(1285)\pi$ | $f_1(1420)\pi$ | $K_1(1270)\overline{K}$ | $a_1\eta$      | $K_1(1400)\overline{K}$ |
|-----------|----------|----------------|----------------|-------------------------|----------------|-------------------------|
| Threshold | 1367     | 1419           | 1564           | 1748                    | 1777           | 1895                    |
|           | $b_1$    | $f_1(1285)$    | $f_1(1420)$    | $K_1(1270)$             | a <sub>1</sub> | $K_1(1400)$             |
| Г         | 142      | 22.7           | 54.5           | 90                      | 300            | 174                     |

| Poles (Set A)                      |              |                      | Channels             |                      |                      |                      |
|------------------------------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $1.47 \pm 0.01 - i(0.12 \pm 0.02)$ | $b_1\pi$     | $f_1(1285)\pi$       | $f_1(1420)\pi$       | $K_1(1270)\bar{K}$   | $a_1\eta$            | $K_1(1400)\bar{K}$   |
| (++++)                             |              |                      |                      |                      |                      |                      |
| gı                                 | 5.22 + i4.40 | 0.02 - <i>i</i> 0.09 | 0.03 - <i>i</i> 0.05 | 1.25 + i1.27         | 0.02 - <i>i</i> 0.12 | 1.33 + i1.63         |
| (1.56, 0.46)                       |              |                      |                      |                      |                      |                      |
| $1.75 \pm 0.02 - i(0.02 \pm 0.01)$ | $b_1\pi$     | $f_1(1285)\pi$       | $f_1(1420)\pi$       | $K_1(1270)\bar{K}$   | $a_1\eta$            | $K_1(1400)\bar{K}$   |
| (++)                               |              |                      |                      |                      |                      |                      |
| gı                                 | 0.10 + i0.95 | 2.73 - <i>i</i> 0.02 | 1.89                 | 5.84 – <i>i</i> 1.85 | 3.49 - <i>i</i> 0.03 | 2.65 - <i>i</i> 0.53 |
| (1.74, 0.30)                       |              |                      |                      |                      |                      |                      |
| Poles (Set B)                      |              |                      | Channels             |                      |                      |                      |
| $1.47 \pm 0.01 - i(0.12 \pm 0.02)$ | $b_1\pi$     | $f_1(1285)\pi$       | $f_1(1420)\pi$       | $K_1(1270)\bar{K}$   | $a_1\eta$            | $K_1(1400)\bar{K}$   |
| (++++)                             |              |                      |                      |                      |                      |                      |
| gı                                 | 5.27 + i4.31 | 0.01 - <i>i</i> 0.03 | 0.03 - <i>i</i> 0.06 | 1.97 — <i>i</i> 1.81 | 0.02 - <i>i</i> 0.08 | 0.91 + i1.07         |
| (1.57, 0.50)                       |              |                      |                      |                      |                      |                      |
| $1.77 \pm 0.01 - i(0.01 \pm 0.01)$ | $b_1\pi$     | $f_1(1285)\pi$       | $f_1(1420)\pi$       | $K_1(1270)\bar{K}$   | $a_1\eta$            | $K_1(1400)\bar{K}$   |
| (++)                               |              |                      |                      |                      |                      |                      |
| gı                                 | 0.13 + i1.44 | 1.37 - <i>i</i> 0.25 | 2.86 - <i>i</i> 0.50 | 4.80 – <i>i</i> 2.29 | 3.53 - <i>i</i> 0.64 | 4.54 – <i>i</i> 1.77 |
| (1.72, 0.20)                       |              |                      |                      |                      |                      |                      |

# SU(3) partners of $\eta_1(1855)$ : I = 1 sector



(a) Modulus square of  $b_1\pi$  scattering. (b) Modulus square of  $K_1\bar{K}$  scattering.

The lower pole relating to  $\pi_1$  (1400) is very broad w/o axial-vector width.

# SU(3) partners of $\eta_1(1855)$ : I = 1 sector



In order to compare our findings with the ones listed in PDG, we evaluate the ratio,

$$\mathcal{R}_1 = rac{|\mathcal{M}_{f_1(1285)\pi}|^2 \, q}{|\mathcal{M}_{\eta'\pi}|^2 \, \widetilde{q}} \, ,$$

$$\mathcal{R}_1 = \left\{ egin{array}{c} \left(2.4^{+0.8}_{-0.6}
ight)^A \ \left(2.1^{+0.4}_{-0.3}
ight)^B \end{array} 
ight.,$$

where the one listed in PDG is 3.80  $\pm$  0.78 for the  $\pi_1(1600)$  state.

# SU(3) partners of $\eta_1(1855)$ : I = 1/2 sector

| C <sub>ij</sub> | a <sub>1</sub> K | $f_1(1285)K$ | $K_1(1270)\eta$                                                 | $f_1(1420)K$                                   | $K_1(1400)\eta$                                     |
|-----------------|------------------|--------------|-----------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| $a_1K$          | -2               | 0            | $-\frac{3}{2}\sin\theta_{K_1}$                                  | 0                                              | $-\frac{3}{2}\cos\theta_{K_1}$                      |
| $f_1(1285)K$    |                  | 0            | $\frac{3}{2}$ sin $\overline{\theta}_{K_1}$ sin $\theta_{3P_1}$ | 0                                              | $\frac{3}{2}$ sin $\theta_{K_1}$ cos $\theta_{K_1}$ |
| $K_1(1270)\eta$ |                  |              | 0                                                               | $\frac{3}{2}\cos\theta_{3P_1}\sin\theta_{K_1}$ | 0                                                   |
| $f_1(1420)K$    |                  |              |                                                                 | 0                                              | $\frac{3}{2}\cos\theta_{3P_1}\cos\theta_{K_1}$      |
| $K_1(1400)\eta$ |                  |              |                                                                 |                                                | 0                                                   |

| C <sub>ij</sub> | $h_1(1170)K$ | $b_1K$ | $K_1(1270)\eta$                               | $h_1(1415)K$                                  | $K_1(1400)\eta$                                   |
|-----------------|--------------|--------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| $h_1(1170)K$    | 0            | 0      | $\frac{3}{2}\cos\theta_{K_1}\sin\theta_{P_1}$ | 0                                             | $\frac{3}{2} \sin \theta_{K_1} \sin \theta_{P_1}$ |
| $b_1K$          |              | -2     | $-\frac{3}{2}\cos\theta_{K_1}$                | 0                                             | $-\frac{3}{2}\sin\theta_{\kappa_1}$               |
| $K_1(1270)\eta$ |              |        | 0                                             | $\frac{3}{2}\cos\theta_{K_1}\cos\theta_{P_1}$ | 0                                                 |
| $h_1(1415)K$    |              |        |                                               | 0                                             | $\frac{3}{2}\sin\theta_{K_1}\cos\theta_{P_1}$     |
| $K_1(1400)\eta$ |              |        |                                               |                                               | 0                                                 |

# SU(3) partners of $\eta_1(1855)$ : I = 1/2 sector

| C <sub>ij</sub>  | a <sub>1</sub> K | $f_1(1285)K$ | $K_1(1270)\eta$                                                 | $f_1(1420)K$                                   | $K_1(1400)\eta$                                     |
|------------------|------------------|--------------|-----------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| a <sub>1</sub> K | -2               | 0            | $-\frac{3}{2}\sin\theta_{K_1}$                                  | 0                                              | $-\frac{3}{2}\cos\theta_{K_1}$                      |
| $f_1(1285)K$     |                  | 0            | $\frac{3}{2}$ sin $\overline{\theta}_{K_1}$ sin $\theta_{3P_1}$ | 0                                              | $\frac{3}{2}$ sin $\theta_{K_1}$ cos $\theta_{K_1}$ |
| $K_1(1270)\eta$  |                  |              | 0                                                               | $\frac{3}{2}\cos\theta_{3P_1}\sin\theta_{K_1}$ | 0                                                   |
| $f_1(1420)K$     |                  |              |                                                                 | 0                                              | $\frac{3}{2}\cos\theta_{3P_1}\cos\theta_{K_1}$      |
| $K_1(1400)\eta$  |                  |              |                                                                 |                                                | 0                                                   |

| C <sub>ij</sub> | $h_1(1170)K$ | $b_1K$ | $K_1(1270)\eta$                               | $h_1(1415)K$                                  | $K_1(1400)\eta$                                   |
|-----------------|--------------|--------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| $h_1(1170)K$    | 0            | 0      | $\frac{3}{2}\cos\theta_{K_1}\sin\theta_{P_1}$ | 0                                             | $\frac{3}{2} \sin \theta_{K_1} \sin \theta_{P_1}$ |
| $b_1K$          |              | -2     | $-\frac{3}{2}\cos\theta_{K_1}$                | 0                                             | $-\frac{3}{2}\sin\theta_{\kappa_1}$               |
| $K_1(1270)\eta$ |              |        | 0                                             | $\frac{3}{2}\cos\theta_{K_1}\cos\theta_{P_1}$ | 0                                                 |
| $h_1(1415)K$    |              |        |                                               | 0                                             | $\frac{3}{2}\sin\theta_{K_1}\cos\theta_{P_1}$     |
| $K_1(1400)\eta$ |              |        |                                               |                                               | 0                                                 |

The transition in  $\mathcal{O}\left(p^2\right)$  order reads

$$\mathcal{L}_{\textit{mix}} ~\propto~ \langle A_{1\mu} \left[ B_{1 \nu}, \left[ u^{\mu}, u^{
u} 
ight] 
ight] 
angle$$

with  $u_{\mu} = i \left( u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger} \right).$ 

# SU(3) partners of $\eta_1(1855)$ : I = 1/2 sector

| Poles (Set A)                     |                      | Channels             |                      |                      |                      |
|-----------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| $\textbf{1.69} \pm \textbf{0.02}$ | a1K                  | $f_1(1285)K$         | $K_1(1270)\eta$      | $f_1(1420)K$         | $K_1(1400)\eta$      |
| (+++++)                           |                      |                      |                      |                      |                      |
| gı                                | 6.89                 | 0.89                 | 3.75                 | 0.54                 | 2.10                 |
| (1.70, 0.28)                      |                      |                      |                      |                      |                      |
| Poles (Set B)                     |                      | Channels             |                      |                      |                      |
| $1.70\pm0.02$                     | a <sub>1</sub> K     | $f_1(1285)K$         | $K_1(1270)\eta$      | $f_1(1420)K$         | $K_1(1400)\eta$      |
| (+++++)                           |                      |                      |                      |                      |                      |
| gı                                | 6.58                 | 0.25                 | 2.45                 | 0.27                 | 3.15                 |
| (1.70, 0.30)                      |                      |                      |                      |                      |                      |
|                                   |                      |                      |                      |                      |                      |
| Poles (Set A)                     |                      | Channels             |                      |                      |                      |
| $1.70\pm0.02$                     | $h_1(1170)K$         | b <sub>1</sub> K     | $K_1(1270)\eta$      | h1(1415)K            | $K_1(1400)\eta$      |
| (-+++)                            |                      |                      |                      |                      |                      |
| gı                                | 0.20                 | 6.46                 | 2.38 - <i>i</i> 0.01 | 0.50                 | 3.21 - <i>i</i> 0.02 |
| (1.70, 0.14)                      |                      |                      |                      |                      |                      |
| Poles (Set B)                     |                      | Channels             |                      |                      |                      |
| $\textbf{1.69} \pm \textbf{0.02}$ | $h_1(1170)K$         | b <sub>1</sub> K     | $K_1(1270)\eta$      | $h_1(1415)K$         | $K_1(1400)\eta$      |
| (-+++)                            |                      |                      |                      |                      |                      |
| gı                                | 0.55 - <i>i</i> 0.01 | 6.78 + <i>i</i> 0.02 | 3.69 <i>- i</i> 0.06 | 0.83 - <i>i</i> 0.01 | 2.17 - <i>i</i> 0.04 |
| (1.70, 0.14)                      |                      |                      |                      |                      |                      |

- Weinberg-Tomzawa term is applied to study GB scattering off 1<sup>+</sup> axial-vector mesons and several poles are found. One of the isoscalar poles may couple to  $\eta_1(1855)$  and the isovector ones may relate to  $\pi_1(1400/1600)$ . In addition, two poles in the I = 1/2 sector may contribute to K(1680).
- When the finite widths of axial-vector mesons are included, the nontrivial peaks in  $|T_{ii}|^2$  are kept.
- In R $\chi$ T, width of  $\eta_1(1855) \rightarrow \eta \eta'$  is predicted and the ratio between  $\pi_1$  (1600) decaying into  $f_1(1285)\pi$  and  $\eta'\pi$  matches the one in PDG.

- Weinberg-Tomzawa term is applied to study GB scattering off 1<sup>+</sup> axial-vector mesons and several poles are found. One of the isoscalar poles may couple to  $\eta_1(1855)$  and the isovector ones may relate to  $\pi_1(1400/1600)$ . In addition, two poles in the I = 1/2 sector may contribute to K(1680).
- When the finite widths of axial-vector mesons are included, the nontrivial peaks in  $|T_{ii}|^2$  are kept.
- In R $\chi$ T, width of  $\eta_1(1855) \rightarrow \eta \eta'$  is predicted and the ratio between  $\pi_1$  (1600) decaying into  $f_1(1285)\pi$  and  $\eta'\pi$  matches the one in PDG.

# Thanks!

### **Backup: Dimensional regularization**

$$G_{j}^{\text{Dim.}}(s) = \frac{1}{16\pi^{2}} \left\{ a(\mu) + \ln \frac{M_{j}^{2}}{\mu^{2}} + \frac{s - M_{j}^{2} + m_{j}^{2}}{2s} \ln \frac{m_{j}^{2}}{M_{j}^{2}} \right. \\ \left. + \frac{\kappa_{j}}{2s} [\ln(s - m_{j}^{2} + M_{j}^{2} + \kappa_{j}) - \ln(-s + m_{j}^{2} - M_{j}^{2} + \kappa_{j}) + \ln(s + m_{j}^{2} - M_{j}^{2} + \kappa_{j}) - \ln(-s - m_{j}^{2} + M_{j}^{2} + \kappa_{j})] \right\}.$$

The loop function  $G_j$  can also be regularized by a three-momentum cutoff  $q_{max}$ , and the corresponding regularized function  $G_j^{\text{Cut}}(s, q_{max})$  is given by

$$\begin{split} G_j^{\mathsf{Cut}}(s) &= \frac{1}{4\pi^2} \int_0^{q_{max}} \mathrm{dq} \frac{\mathrm{q}^2}{\omega_1 \omega_2} \\ &\times \frac{\omega_1 + \omega_2}{(\sqrt{s} - (\omega_1 + \omega_2))(\sqrt{s} + \omega_1 + \omega_2)}, \end{split}$$

$$\end{split}$$
ith  $\omega_1 = \sqrt{m_j^2 + q^2} \text{ and } \omega_2 = \sqrt{M_j^2 + q^2}.$ 

w