In order to perform strong field physics experiments such as particle acceleration, laboratory astrophysics, high energy density physics, high-energy ultra-short pulses (PW peak power) are strongly required.
The generation of such pulses can be performed through the Optical Parametric Chirped Pulse Amplification (OPCPA) technique. OPCPA main advantages, respect to the CPA, are the high...
The LUX laser-plasma accelerator, built in close collaboration of the University of Hamburg and DESY, is designed to provide plasma electron beams with enhanced stability as a driver for future compact light sources. After significant in-house development of the driving 200 TW ANGUS laser system, the
laser has reached an operational stability, that enabled us to repeatedly demonstrate 24-hour...
Laser-plasma acceleration promises to be a powerful technology for driving future compact light sources. The LUX laser-plasma accelerator is driven by the 200 TW ANGUS Ti:Sapphire laser system which has been designed aiming for long-term stability, enabling stable operation over many hours. Demonstrating this during several 24-hour runs, enough data for reliable statistics could be taken....
High peak power lasers have been succesfully used to accelerate particles, for example producing a 8 GeV record for electron acceleration with a PetaWatt laser. However laser repetition rate is quite limited, to 1 Hz maximum and this prevents use of lasers in applications requiring significantly higher repetition rate. To be able to build the next generation of laser-based machines such as...
There is increasing demand for high average, high peak power laser systems to drive laser wakefield plasma accelerators (LWFAs) at > kHz repetition rates. One promising route to these systems is the coherent combination of lower power laser systems and much attention has focused on fibre lasers as suitable candidates, in both filled and tiled aperture configurations. However, previous work has...
Novel optical, plasma based accelerators require high peak-power laser drivers at high repetition rate and kW-scale average power for their operation. Significant progress has been made in laser performance during the past decades, mainly concerning peak-power, now in the 10 PW range, well beyond what needed for driving laser-wakefied acceleration. Enhancement of other parameters, like...
Laser-plasma accelerators are prominent candidates to drive a next generation of high-brightness x-ray sources. The LUX laser-plasma accelerator, driven by the ANGUS 200 TW laser, has recently demonstrated the generation of few-nm-plasma-driven undulator radiation. Long-term operation of the plasma accelerator with reproducible and stable electron beams requires a highly stable drive laser. To...
Today’s laser-plasma accelerators are driven by terawatt-class laser systems at a few-Hz repetition rates and few-Joule pulse energies. Typically, the architecture of these systems includes a compressor based on in-vacuum gold-coated gratings, which absorb a percent-level fraction of the incident laser energy. However, as laser technology pushes the limit towards higher repetition rates and...
One of the main challenges for the development of 10 Hz petawatt-class lasers is the avoidance of grating heating in the compressor [1,2]. Beam distortions appear even at low average power [3], meaning mitigation strategies must be adopted for smaller scale systems. In this paper we describe detailed measurements of the compressor parameters in TA2 of the Gemini laser at the Central Laser...