Plasma based electron acceleration is widely considered as a promising concept for compact electron accelerators with broad range of applications. These accelerators can be driven by either ultra-intense laser beams (LWFA) or high-current particle beams (PWFA).
Here, we report on a novel approach to combine both schemes in a compact experimental setup. In our “LWFA + PWFA” hybrid accelerator,...
A new take on ionization-assisted shock-front injection was used to create spectrally two-component beams in a laser-wakefield accelerator, with the goal of investigating the possibilities for such an injection scheme for beam-driven plasma-wakefield acceleration. Ionization injection was combined with shock-front injection to provide characteristic spectra with a broadband, continuous part...
During its Run 1, AWAKE has very successfully demonstrated the self-modulation of long SPS proton bunches in plasma, as well as the acceleration of externally injected, 19MeV electrons up to 2GeV. The goal of Run 2 is to accelerate an externally injected electron bunch, i.e. charge >100pC to GeV energy with a narrow final energy spread and preservation of its incoming emittance. To achieve...
The beam-driven plasma photocathode wakefield acceleration concept [1] allows decoupled laser injection of electron bunches with emittance and brightness reach many orders of magnitude better than state-of-the-art [2]. After successful proof-of-concept demonstration at SLAC FACET in the “E-210: Trojan Horse” project [3], we now embark on the next experimental phase around the “E-310:...