Speaker
Description
Scattering amplitudes in gravitational theories provide useful tools for the calculation of observables associated to encounters of compact objects, such as black holes and neutron stars. In this talk, I will discuss recent progress in exploring the classical limit of scattering amplitudes and their connection to gravitational observables in $\mathcal{N}=8$ supergravity, which serves as a theoretical laboratory for developing such tools in a technically simpler arena compared to Einstein gravity. An interesting point concerns the integrability of bound orbits of binary half-BPS black holes in maximal supergravity, which as pointed out by Caron-Huot and Zahraee, prohibits orbital precession in the probe limit. I will illustrate how the eikonal phase obtained from the two-loop $2\to2$ amplitude determines the deflection angle for hyperbolic encounters and, via analytic continuation, the precession angle for bound orbits, yielding nontrivial precession beyond the strict probe liimit.