Conveners
Hypernuclei and kaonic atoms: Session 1
- Satoshi N. Nakamura (the University of Tokyo)
Hypernuclei and kaonic atoms: Session 2
- Stefano Bianco (Istituto Nazionale di Fisica Nucleare)
Hypernuclei and kaonic atoms: Session 3
- Hirokazu Tamura
Hypernuclei and kaonic atoms: Session 4
- Alessandro Feliciello (Istituto Nazionale di Fisica Nucleare)
The elementary YN interaction remains of significant and continuing interest in nuclear physics. On the one hand, it is important to understand hadron dynamics in which the strange quark is involved and to construct a comprehensive picture of the baryon-baryon interaction. On the other hand, reliable YN potentials are needed for in-medium calculations, such as of hypernuclear structure and the...
Study of the hyperon-nucleon (YN) interactions is vital to expand our knowledge on the nucleon-nucleon (NN) interaction to the generalized baryon-baryon (BB) interactions within the SU(3) flavor symmetry. It leads to an essential understanding of the baryon-baryon interactions as the interactions between quark clusters. Such inter-quark interactions should play an essential role in generating...
Charge symmetry breaking (CSB) in the mirror $^4_\Lambda {\rm H} - ^4_\Lambda {\rm He}$ hypernuclei has been known for decades. Recent experimental measurements [1,2] confirmed the large CSB splitting in the corresponding $0^+$ states $\Delta B(0^+) = 233 \pm 92$~keV while the experimental value for the $1^+$ excited states $\Delta B(1^+) = -83 \pm 94$~keV allows a change of sign, being...
Hypernuclear structure studies have been progressing steadily through the $K$- and $\pi$-induced production reaction experiments, especially by the recent $\gamma$-ray coincidence measurements with the large volume Ge detector. Moreover a series of recent $(e,e' K^+)$ reaction experiments from the Jefferson Laboratory provide high-resolution data of the low-lying energy levels for $p$-shell...
Experimental investigation of the strong interaction in the low-energy regime is mandatory to constrain models of the low-energy meson-baryon interaction, with implications in several fields, ranging from the search for exotic mesic nuclear bound states, to the structure of compact astrophysical objects like the neutron stars.
In this talk we will review the studies performed by the AMADEUS...
Kaonic atoms represent a unique laboratory for the study of the antikaon-nucleus interaction at threshold and investigate the low-energy quantum chromodynamics (QCD) in the strangeness sector. State-of-the-art X-ray detectors and modern experimental techniques allow to perform high-precision X-ray kaonic atoms spectroscopy, leading to fundamental input for nuclear, particle, and astrophysics...
We investigate the constraints on the kaonic atom optical potential deduced from the latest extremely high precision data of the 2p states of the kaonic $^3$He and $^4$He atoms [1].
In our analyses, we consider the phenomenological optical potentials proportional
to the nuclear density distributions, and the potentials inspired by the theoretical studies of the chiral unitary model and...
We are going to complete the construction of the S-2S spectrometer at the K1.8 beam line in J-PARC hadron hall, in May, 2023. The S-2S spectrometer is composed of "QQD" magnets to measure the missing-mass spectrum of $^{12}$C$(K^-,K^+)^{12}_{\Xi}$Be reaction with a good energy resolution of 2 MeV(FWHM), which is so far the best energy resolution applied for the reaction. The existence of...
Double-Λ and Ξ hypernuclei : Findings and Prospects
Kazuma Nakazawa 1, 2
1 High Energy Nuclear Physics Laboratory, RIKEN
2 Faculty of education, Gifu University, Japan
Since the discovery of the doubly-strange hypernucleus in 1963, many efforts have been made but no new discoveries have been made. In the 1980s, we...
Missing mass spectroscopy of Λ hypernuclei using the (e,e′K+) reaction has been performed at the Thomas Jefferson National Accelerator Facility (JLab) with several experiments in the past in Hall A and Hall C.
One experiment, expected to run in 2026 in Hall C, will provide the first study of the isospin dependence in medium-mass hyperisotopes by populating Λ-K-40 and Λ-K-48 using an...
Preparation works are now in progress for next-generation Lambda hypernuclear spectroscopy using the (e,e'K$^+$) reaction at Jefferson Laboratory (JLab) and the ($\pi^+$,K$^+$) reaction at J-PARC. The experiments at JLab aim to clarify the isospin dependence of Lambda hypernuclei using Ca40,48 targets and the mass number dependence from light to heavy hypernuclei such as $^{208}_\Lambda$Tl...
The WASA-FRS hypernuclear experiment has been performed at GSI in 2022 for measuring the lifetimes of hypertriton and ${}_{\Lambda}^{4}\mathrm{H}$ and for confirming whether or not a neutral charged bound state of a $\Lambda$ hyperon and two neutrons, $nn\Lambda$, can exist. Hypernuclei of interest were produced by the induced reaction with ${}^{6}\mathrm{Li}$ and ${}^{12}\mathrm{C}$...
Over the past decade, significant progress has been made in understanding (anti)(hyper)nucleosynthesis at hadronic colliders, such as the Large Hadron Collider (LHC). Research on the production of antinuclei and hypernuclei has broadened our understanding of the field, with the ALICE experiment playing a pivotal role.
As we look towards the future, new experiments and detector technologies at...
Hypernuclei, bound 1 states of hyperons and nucleons, have been suggested to be sensitive probes to the medium properties of the nuclear matter created in heavy-ion collisions. Measurements on the intrinsic properties of hypernuclei, such as their lifetimes and binding energies, can also give constraints to the hyperon-nucleon interaction, which is an essential ingredient in the...
Precise measurements of $\Lambda$ hypernuclear binding energies are essential in understanding the interaction between $\Lambda$ and nucleons. Thanks to the recent progress of accurate theoretical calculations and cutting-edge experiments for $\Lambda$ hypernuclei around the light mass regions, the studies of the interaction of the hypernuclear medium have progressed well; for example, the...
The hypertriton is the lightest known hypernucleus composed of a proton, a neutron, and a Λ hyperon. This extremely loosely bound system has a radial extension of its wave function of about 10 fm. Measurements of its lifetime and binding energy provide information on the hadronic interaction between hyperons and nucleons which is complementary to that obtained from correlation measurements....
Systems like $\overline{\rm K}$N and baryon–antibaryon (B$\overline{\rm B}$) are both characterized by the presence of strong inelastic channels at the production threshold, which can affect the properties and the formation of bound states and resonances. The K$^-$p interaction is characterized by the presence of several coupled channels, systems with a similar mass and the same quantum...