Description
Chair: Kengo Shimanoe
Luminescence Probing of Surface Adsorption Processes Using InGaN/GaN Nanowire Heterostructure Arrays
Adsorption phenomena lie at the heart of understanding semiconductor gas sensors. The most widely studied kind of gas sensors are metal oxide sensors which respond via resistance changes to changes in the ambient gas concentration. A key problem in the analysis of gas sensor behavior is that...
Understanding the mode of operation of metal-oxide gas sensors (e.g. SnO2, In2O3) is of great scientific and economic interest. Such a knowledge based approach requires the development and application of spectroscopic tools to monitor the relevant surface and bulk processes under working conditions (operando approach). In this contribution, we will present recent operando results on ethanol...
Aim of this work is to compare the electrical responses to 100-400ppb NO2 gas concentrations of WO3 electrospun nanofibers both activated by thermal (in the temperature range 25-100°C) and/or visible light at different wavelengths (Red λ=670 nm, Green λ=550 nm, and Purple-Blue λ=430 nm). WO3 nanofibers were prepared by mixing a W-O sol-gel transparent solution with a polymeric solution made of...