Electron beam driven wakefield acceleration has been the main focus of research at AWA for many years, using high charge electron bunches (1 to 100 nC) for both Structure Wakefield Acceleration (SWFA) and Plasma Wakefield Acceleration (PWFA). We will present recent experimental results obtained with several types of X-band structures: metallic, dielectric loaded, photonic band gap (PBG), and...
First dielectric wakefield acceleration (DWA) experiments have been conducted on CLARA/VELA test facility at Daresbury Laboratory, UK. The DWA structure was of planar geometry with variable gap and dielectric thicknesses ranging from 0.025 to 0.2mm. The facility, in its current state, provided electron bunches with up to 100pC bunch charge, variable 0.2-2.0ps bunch lengths at the beam energy...
A continuously tunable THz source driven by wakefields in a dielectric lined waveguide (DLW) has been experimentally demonstrated at the CLARA/VELA test facility at Daresbury Laboratory, UK. The source was tuned across the range 0.55 – 0.95 THz with a bandwidth of <50 GHz. The DLW was a planar structure with 25 um quartz dielectric layers and an aperture variable from 0.15 mm to 1.1 mm....
The results of theoretical, numerical and experimental studies of THz laminated structures for particle acceleration are presented. The two-layer metallic and metal-dielectric structures are considered. The analytical presentations for longitudinal impedance and wake potential are given. The resonant properties of the synchronous TM01 fundamental mode are discussed and the conditions for the...