Speaker
Emma Curry
(UCLA)
Description
We review results from the recent guided-THz IFEL experiment at the UCLA PEGASUS facility. Using a parallel plate waveguide, the group velocity of a near-single cycle THz pulse was reduced to match electron beam propagation in an undulator, resulting in a ponderomotive interaction sustained for 30 cm. With a 1 uJ THz pulse obtained by optical rectification in a LN source, the projected beam energy distribution increased from a full peak width of 30 keV to more than 100 keV. When using a long (multi-ps) electron beam, longitudinal phase space measurements reveal the snake-like energy modulation from the ps-scale THz pulse. Using a short beam configuration, we also measure bunch compression, limited by the available drift length to a factor of two. Finally, we explore the application of this technique to amplification of the THz seed using the 1-D multi-frequency simulation code we have developed for this novel zero-slippage interaction scheme.
Primary author
Emma Curry
(UCLA)
Co-authors
Prof.
Avraham Gover
(Tel Aviv University)
Prof.
Pietro Musumeci
(UCLA)
Siara Fabbri
(UCLA)