June 29, 2015 to July 3, 2015
Europe/Rome timezone

Evolution of the K-bar N - pi Sigma system with M^2_pi in a box from UχPT

Jul 2, 2015, 5:30 PM
Room PS4 (Building E, Polo Fibonacci, Pisa)

Room PS4

Building E, Polo Fibonacci, Pisa

Talk Hadron Structure and Meson-Baryon Interaction Working Group Parallel Session 6 - Hadron Structure & Meson-Baryon Interaction WG


Raquel Molina (The George Washington University, Washington)


The Λ(1405) baryon is of continued interest in hadronic physics, being absent in many quark model calculations and supposedly manifesting itself in a two-pole structure. Finite- volume Lattice-QCD eigenvalues for different quark masses were recently reported by the Adelaide group [1]. We compare these eigenvalues to those of a unitary Chiral Perturbation Theory (UχPT) model [2], evaluated in the finite volume [3]. The UχPT calculation predicts the quark mass dependence remarkably well. It also explains the overlap pattern with different meson-baryon components, mainly πΣ and K-bar N, at different quark masses. Some of the results of our calculation are shown in Fig. 1. We will study the properties of the two lower states in the box as predicted by UχPT and compare to those of the two poles of the Λ(1405) in the infinite limit. More accurate Lattice QCD are required to draw definite conclusions on the nature of the Λ(1405). References [1] J. M. M. Hall, W. Kamleh, D. B. Leinweber, B. J. Menadue, B. J. Owen, A. W. Thomas and R. D. Young, Phys. Rev. Lett. 114, no. 13, 132002 (2015) [2] E. Oset, A. Ramos and C. Bennhold, Phys. Lett. B 527, 99 (2002) [Phys. Lett. B 530, 260 (2002)] [3] M. Doring, J. Haidenbauer, U. G. Meissner and A. Rusetsky, Eur. Phys. J. A 47, 163 (2011)

Primary authors

Prof. Michael Doering (The George Washington University) Raquel Molina (The George Washington University, Washington)

Presentation materials