Speaker
Mr
Christoph Greubel
(Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany)
Description
High energy ion microprobes allows a precise energy dose deposition, which makes them very attractive for irradiation of living, biological samples and open a wide range of application in radiation biology and neighboring fields, e.g. medicine. Beam size and targeting accuracy in the micron and submicron range allows structured and targeted irradiation on a dimension of the cell nuclei and below. Beyond the laterally very well defined irradiation with single or counted ions the amount of deposited energy is very reproducible. By using ions of different linear energy transfer (LET) the damage per single ion can be varied by several orders of magnitudes.
At the ion mircoprobe SNAKE installed at the Munich tandem accelerator 20 MeV protons are available. In new kinds of experiments these low LET protons (LET in water of 2.65 keV/µm) are focused to imitate and approximate spatial concentrated dose deposition of heavy, high LET ions to gain understanding of RBE effects [1]. In other kinds of experiments the potential of structured irradiation to reduce side effects in radiation therapy is investigated [2]. Structured irradiation with 55 MeV Carbon ions were used to induce well separated ionizing radiation induced foci. Subsequent measurement of foci distances reveals movement not compatible with normal diffusion, which might enhance rejoining probability of DSB end [3]. We cover these and other experiments to give an overview of the radiobiological research at the ion microprobe SNAKE.
Supported by the DFG-Cluster of Excellence 'Munich-Centre for Advanced Photonics' and by BMBF-project 02NUK031A "LET-Verbund"
[1] T.E. Schmid et al., Low LET protons focused to submicrometer shows enhanced radiobiological effectiveness, Phys. Med. Biol. 57 (2012) 5889
[2] S. Girst et. al, Reduced side effects by proton microchannel radiotherapy: study in a human skin model, Rad. Env. Biophys. 52 (2013) 123
[3] S. Girst et al., Subdiffusion Supports Joining Of Correct Ends During Repair Of DNA Double-Strand Breaks, Sci Rep. 3 (2013) 2511
Primary author
Mr
Christoph Greubel
(Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany)
Co-authors
Anna A. Friedl
(Department of Radiation Oncology, Ludwig-Maximilians-Universität München, Germany)
Christian Siebenwirth
(Department of Radiation Oncology, Technische Universität München, Germany, Germany)
Dietrich Walsh
(Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany)
Ernst Schmid
(Department of Radiation Oncology, Ludwig-Maximilians-Universität München, Germany)
Guido A. Drexler
(Institute for Cell Biology, Ludwig-Maximilians-Universität München, Germany)
Günther Dollinger
(Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany)
Judith Reindl
(Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany)
Katarina Ilicic
(Department of Radiation Oncology, Technische Universität München, Germany, Germany)
Olga Zlobinskaya
(Department of Radiation Oncology, Technische Universität München, Germany, Germany)
Stefanie Girst
(Institut für Angewandte Physik und Messtechnik, Universität der Bundeswehr München, Germany)
Thomas. E. Schmid
(Department of Radiation Oncology, Technische Universität München, Germany, Germany)