16–20 Jun 2025
THotel, Cagliari, Sardinia, Italy
Europe/Rome timezone

Graph Neural Network Acceleration on FPGAs for Fast Inference in the Future ATLAS Muon Trigger Update

Not scheduled
20m
THotel, Cagliari, Sardinia, Italy

THotel, Cagliari, Sardinia, Italy

Via dei Giudicati, 66, 09131 Cagliari (CA), Italy
Parallel talk Real-Time Data Processing

Speaker

Martino Errico (Sapienza Università di Roma and INFN Roma)

Description

The upcoming High Luminosity phase of the Large Hadron Collider will require significant advancements in real-time data processing to handle the increased event rates and maintain high-efficiency trigger decisions. In this work, we extend our previous studies on deploying compressed deep neural networks on FPGAs for high-energy physics applications by exploring the acceleration of graph neural networks for fast inference in the ATLAS muon trigger system.
Graph-based architectures offer a natural way to represent and process detector hits while preserving spatial and topological information, making them particularly suitable for muon reconstruction in a noisy and sparse environment. This work contributes to the broader goal of integrating AI-driven solutions into HEP triggering systems and represents a step forward in realizing fast, hardware-optimized, graph-based inference in experimental physics.

AI keywords fast-inference:FPGA:trigger:LHC

Primary authors

Davide Fiacco (Istituto Nazionale di Fisica Nucleare) Giuliano Gustavino (Istituto Nazionale di Fisica Nucleare) Graziella Russo (Istituto Nazionale di Fisica Nucleare) Martino Errico (Sapienza Università di Roma and INFN Roma) Stefano Giagu (Sapienza Università di Roma and Istituto Nazionale di Fisica Nucleare) Valerio Ippolito (Istituto Nazionale di Fisica Nucleare)

Presentation materials

There are no materials yet.