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Triggers for the high luminosity frontier
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Near future colliders, such as HL-LHC, 
will operate in a high luminosity regime 
to allow for higher statistics 

Such experimental conditions impose 
demanding constraints on trigger 
algorithms, which must be able to cope 
with very high rates and complex events

Machine Learning trigger algorithms 
with O(100 ns) inference latency offer a 
compelling alternative to traditional 
algorithms 



Detector geometry
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The viability of a ML trigger algorithm is studied on a typical use case: particle 
tracking and selection in a muon spectrometer

The model for the geometry of the detector is the Phase-II ATLAS Muon 
Spectrometer, a detector with cylindrical symmetry around the z-axis of the 
reference frame, and the quantities of interest are:



The Muon Spectrometer
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● Covers the region:
{|η| < 1.05} x {5 < r[m] < 10}

● 4 stations of detectors in volume
● Detectors are assumed to have 

nominal space-time resolution:
1cm x 1ns 

● Independently segmented in η and φ 
● Immersed in 0.5 T toroidal field which 

bends in the (η, r) plane to allow pT 
reconstruction

● Detector response fast enough to be 
used for triggering

We assume one trigger instance per Δη x Δ𝜑 
~ 1.05 x 11º



The hardware muon trigger 
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Implementation 
studies using a 
Virtex Ultrascale+ 
FPGA (XCVU13P)
and hls4ml

Resource Total Typical target 
occupancy

LUT 432k 25%

FF 864k 25%

BRAM 23.6 Mb -

The selected FPGA is the same used for the 
ATLAS muon trigger. Typical target resource 
usage is estimated as follows:



Performance criteria

The following criteria are used to judge the viability of the trigger algorithm 
for a high rate experiment use case

● Implementable on selected FPGA
● Easily maintainable
● Max latency ~ 100 ns
● Output:

○ n of muons in event (0, 1, 2 or 2+)
○ reconstruction (η, pT, q) of up to 2 leading tracks

● Good pT reconstruction performance, as evaluated through the 
efficiency turn-on curve
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Dataset

A toy dataset of about 4M events has been produced for the study of the 
trigger algorithms, according to the geometry, magnetic field and expected 
resolution of the model detector

● Roughly 2M muons:
○ muons from primary vertex
○ uniformly distributed: η in (0, 1.05), pT in (3, 30) GeV
○ labelled with target q, η and pT

● Roughly 2M events of simulated bg:
○ random bg, no correlation with signal
○ clusters, uniformly distributed
○ labelled with zeros

● Random bg also added to muon events
● Hits are given by indices/coordinates of the relative η bins (384 per layer)
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CNN model

Strategy outlined in Eur. Phys. J. C 81, 969 (2021):
● Train large Teacher model
● Train smaller Student model using Teacher as 

guide (Knowledge Distillation, KD)
● Quantize the Student model using 

Quantization-Aware Training (QAT)
● Promising results for single-track 

implementation:
○ good reconstruction performance
○ FPGA occupation < 1% (trigger only)
○ 440 ns latency
○ later implementation with 84 ns latency
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https://doi.org/10.1140/epjc/s10052-021-09770-w


CNN model
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Good single track performance, but not 
directly scalable to multi-track case:

1. less effective on events with tracks not 
sufficiently resolved in η (|Δη|< 0.04)

2. suboptimal rejection of subleading 
muons below lower thresholds

3. good end-to-end latency (<250 ns), but 
hard to meet FPGA constraints

IDEA: Study effectiveness of Graph Neural 
Network proof-of-concept

Resource Required

LUT 214%

FF 36%



GNN - graph building

Connect nodes if (assuming minimum 
curvature radius R):

(𝜂1, r1)

(𝜂2, r2)
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Edges connecting two signal nodes are 
labelled as signal edges; all other edges 
are labelled as background edges.

Rec.Graph 
building

Edge 
pred.

General idea: build static graphs starting only 
from the hits, select track segment candidates 
and reconstruct the muons

Currently only 0 and 1 muon events in 
the dataset, 99.7% with 50 nodes or 
fewer



GNN model - edge prediction

Graph Neural Networks for Charged Particle Tracking on FPGAs

static graphs edge prediction
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IntNet block, repeated three times

Rec.Graph 
building

Edge 
pred.

https://arxiv.org/abs/2112.02048


GNN model - edge prediction

only MLPs 

(matrix product)

binary prediction

IntNet block, repeated three times

12Graph Neural Networks for Charged Particle Tracking on FPGAs

Rec.Graph 
building

Edge 
pred.

https://arxiv.org/abs/2112.02048


● All edges of all signal 
events combined

● Good signal/noise 
separation

● Some misidentified 
edges, but difficult 
to quantify effect on 
reconstruction 

13

GNN results - edge scores Rec.Graph 
building

Edge 
pred.



GNN results - edge prediction

14

● Original hit labels do not 
differentiate between 
direct muon hits and 
other processes 

● Thus, rejecting some 
signal edges could 
improve reconstruction

● Final word on 
performance comes from 
turn-on curves, which 
require implementing 
momentum 
reconstruction

Rec.Graph 
building

Edge 
pred.



GNN model - track reconstruction
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● Include reconstruction in model 
● Train over reconstruction labels rather than classifying edges
● Using output representation is more adaptable and better for pipelining 

(n, q)

(η, pT)

IntNet block x 3

static graphs

concat
node pool

edge pool

class MLP

reg MLP

Rec.Graph 
building

Edge 
pred.



GNN model - track reconstruction
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Adaptive pooling operation 
(n = nodes, e = edges, F = features)
● Input: ((Nn, Fn), (Ne, Fe))
● Trainable linear layer with Mn sigmoid outs gives Mn scores to each node
● Similarly, Me scores for each edge
● Features are multiplied by relative scores, summed over the entire input graph and flattened
● Output: (Mn x Fn, Me x Fe), currently using Mn = Me = 1

(n, q)

(η, pT)

IntNet block x 3

static graphs

concat
node pool

edge pool

class MLP

reg MLP

Rec.Graph 
building

Edge 
pred.



GNN results - efficiency
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CNN results:
✔ efficiency > 90% from 14 GeV
✘ minimum efficiency 2% for leading and
    10% for subleading track
✔ bg efficiency 0.17%
✘ larger model compared to prototype
    (8.4k 6 bit par vs 1k 3 bit)

Preliminary GNN results:
✔ efficiency > 90% before CNN
✔ minimum efficiency 5%
✔ fewer parameters (5.2k) than CNN (8.4k)

Conclusion: keep developing GNN architecture

Rec.Graph 
building

Edge 
pred.



Implementation - status
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GNN

MLPs + matrix 
product, 
implementable 
through hls4ml
 

Reco MLPs

Implemented through 
hls4ml

Latency (preliminary): 
59 ns

Adaptive 
pooling

Custom 
implementation 
currently being 
worked on

Graph 
building

Custom 
implementation 
required

Graph building algorithm inspired by: Graph Neural Networks for Charged Particle Tracking on FPGAs,
Real-time Graph Building on FPGAs for Machine Learning Trigger Applications in Particle Physics

current stage

https://arxiv.org/abs/2112.02048
https://arxiv.org/html/2307.07289v2


Future developments
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● Ongoing work on extension of GNN to include classification, as well as 
multi-track reconstruction

● Inclusion of φ reconstruction
● Inclusion of other input features (such as magnetic field)
● Architecture optimization:

○ ensemble of shallower GNNs
○ quantization-aware training



Thank you for your attention
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Compression methods
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● Reduce weight and activation bit widths
● Quantization Aware Training (QAT)  

simulates quantization during training
● Learned weights are more easily quantized

● Knowledge Distillation (KD): 
transfers learned properties from a 
large Teacher to a smaller Student

● Compute distance between 
intermediate representations of 
Teacher and Student

● Add distance to loss when Student is 
underperforming



Knowledge Distillation
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Student loss

Hint losses: squared L2 
distances of the 
intermediate 
representations at given 
depths

Teacher loss

Eur. Phys. J. C 81, 969 (2021)

https://doi.org/10.1140/epjc/s10052-021-09770-w


Quantization
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● Fake quantization applied at each layer during training: precision error is 
automatically accounted for in the loss

● Straight-through estimator used for fake quantization during backpropagation
● Actual quantization applied after training 



CNN - I/O

Input: 
● images with pixels 

corresponding to hits
● separate single track 

images ORed to make 
multi-track images (0, 
1, 2 or 3 muons per 
image)
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Output:
● n of muons in event (0, 1, 2 or 2+)
● reconstruction (η, pT, q) of up to 2 leading 

tracks
● output tensor: 

         [[n, q1, pT1, η1], [n, q2, pT2, η2]]
● output vectors are zeroed when no 

corresponding muon is IDed
● φ reconstruction not included



CNN - input 

● (station indices) x (discretized η coor.)
● One row of pixels per station (4)
● One column of pixels per η bin (384)
● 4x384 images, reshaped to 4x192x2, one 

channel with even η indices, one with odd
● Hits obtained by reducing the original 9 

layers:
○ 2/3 for S0, OR for other stations
○ pixel value keeps track of number of 

active pixels reduced (2 or 3 for S0, 1 or 
2 for the rest)

● Average density of 3 muon images is 3%
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CNN - multi-track reconstruction

Teacher (unconstrained) model scales poorly with max number of muons per event

All CNN results given for 
min|∆η(μi , μj )| > 0.04

~85% acceptance factor

CNN VGG-like architecture not well suited for multi-track reconstruction 26



CNN - efficiency
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Lowest cut studied (6 GeV) shows that, while performance on leading track 
reconstruction is good, rejection of subleading muons below threshold is not.



CNN - classification
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n of tracks in event:
● 0 for bg events
● good accuracy
● used for bg suppression in the 

reconstruction task

q of leading track:
● 0 for bg events
● good accuracy
● very similar performance 

on other tracks



GNN - motivations

● More efficient for sparse data 
(4x384 images vs max 50 nodes)

● Adaptable to complex geometries 
(direct use of strip coordinates)

● Straightforward inclusion of other local features 
(φ measurement, magnetic field)

● Hopefully able to reconstruct different muons 
as separate tracks

0.3% of events 
have >50 nodes
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GNN- graph statistics
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Development pipeline

Vivado 
HLS

https://github.com/fastmachinelearning/hls4ml 31

https://arxiv.org/abs/2112.02048

