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Triggers for the high luminosity frontier

Near future colliders, such as HL-LHC,
will operate in a high luminosity regime
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Detector geometry

The viability of a ML trigger algorithm is studied on a typical use case: particle
tracking and selection in a muon spectrometer

The model for the geometry of the detector is the Phase-II ATLAS Muon

Spectrometer, a detector with cylindrical symmetry around the z-axis of the
reference frame, and the quantities of interest are:
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The Muon Spectrometer

Covers the region:

{|n] <1.05} x {5 <r[m] <10}

4 stations of detectors in volume
Detectors are assumed to have
nominal space-time resolution:

Tcm x 1ns

Independently segmented in nand ¢
Immersed in 0.5 T toroidal field which
bends in the (n, r) plane to allow p.
reconstruction

Detector response fast enough to be
used for triggering

We assume one trigger instance per An x Ag
~1.05x11°
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The hardware muon trigger

Implementation
studies using a
Virtex Ultrascale+

FPGA (XCVU13P)
and hls4dmi

The selected FPGA is the same used for the
ATLAS muon trigger. Typical target resource
usage is estimated as follows:

Resource Total Typical target
occupancy
LUT 432k 25%
FF 864k 25%
BRAM 23.6 Mb




Performance criteria

The following criteria are used to judge the viability of the trigger algorithm
for a high rate experiment use case

Implementable on selected FPGA
Easily maintainable
Max latency ~ 100 ns
Output:
o nofmuonsinevent(0, 1,2 or 2+)
o reconstruction (n, p;, q) of up to 2 leading tracks
e Good p,reconstruction performance, as evaluated through the
efficiency turn-on curve



Dataset

A toy dataset of about 4M events has been produced for the study of the
trigger algorithms, according to the geometry, magnetic field and expected
resolution of the model detector

e Roughly 2M muons:
o muons from primary vertex
o uniformly distributed: n in (0, 1.05), p;in (3, 30) GeV
o labelled with target g, n and p,
e Roughly 2M events of simulated bg:
o random bg, no correlation with signal
o clusters, uniformly distributed
o labelled with zeros
e Random bg also added to muon events
e Hits are given by indices/coordinates of the relative n bins (384 per layer)



CNN model

Strategy outlined in Eur. Phys. |. C 81, 969 (2021):

Train large Teacher model
Train smaller Student model using Teacher as
guide (Knowledge Distillation, KD)
Quantize the Student model using
Quantization-Aware Training (QAT)
Promising results for single-track
implementation:

o good reconstruction performance

o FPGA occupation < 1% (trigger only)

o 440 ns latency

o later implementation with 84 ns latency

Efficiency of detection
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CNN model

Good single track performance, but not
directly scalable to multi-track case:

1. less effective on events with tracks not
sufficiently resolved in n (|An|< 0.04)

2. suboptimal rejection of subleading
muons below lower thresholds

3. good end-to-end latency (<250 ns), but
hard to meet FPGA constraints

IDEA: Study effectiveness of Graph Neural
Network proof-of-concept
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layer r [m]

GNN - graph building G M

building pred.

e bg hits
e signal hits

10
General idea: build static graphs starting only

from the hits, select track segment candidates
and reconstruct the muons

Connect nodes if (assuming minimum
curvature radius R):

AT‘lg
R

Edges connecting two signal nodes are
labelled as signal edges; all other edges

|tanh 7o — tanhny| = k

6 are labelled as background edges.
Currently only 0 and 1 muon events in
sl m ) | | | the dataset, 99.7% with 50 nodes or
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GNN model - edge prediction

IntNet block, repeated three times

(xi, a;j

Interaction network

. Edge Node Edge
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Graph Neural Networks for Charged Particle Tracking on FPGAs
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https://arxiv.org/abs/2112.02048

GNN model - edge prediction

(xi, a;j

Interaction network
\\[oo [

Aggregate block

r_
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(matrix product)

only MLPs
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IntNet block, repeated three times

Graph Neural Networks for Charged Particle Tracking on FPGAs

Graph
building
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GNN results - edge scores
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e All edges of all signal
events combined

e Good signal/noise
separation

e Some misidentified
edges, but difficult
to quantify effect on
reconstruction
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GNN results - edge prediction

Original hit labels do not
differentiate between
direct muon hits and
other processes

Thus, rejecting some
signal edges could
improve reconstruction
Final word on
performance comes from
turn-on curves, which
require implementing
momentum
reconstruction

r[m]

101

building

Graph

pred.

Graph of event 14, with labels {n_tracks: 1, trk_q: 1, trk_pt: 20.8, trk_eta: 0.706}

4 signal nodes

bg nodes

accepted signal edges
rejected signal edges
rejected bg edges
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GNN model - track reconstruction Saph e

(x;, a;;) node pool class MLP | (n, Q)
J concat
m — IntNet block x 3
static graphs edge pool
e P reg MLP | (N, p;)

e Include reconstruction in model
e Train over reconstruction labels rather than classifying edges
e Using output representation is more adaptable and better for pipelining
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GNN model - track reconstruction Saph e

\
(X @;;) / node pool Concat class MLP | (n, Q)
N — IntNet block x 3 —
. \\
static graphs ﬂ reg MLP | (n, p,)

Adaptive pooling operation

(n = nodes, e = edges, F = features)
Input: (N, F), (N, F)
Trainable linear layer with M sigmoid outs gives M_ scores to each node

Similarly, M, scores for each edge

Features are multiplied by relative scores, summed over the entire input graph and flattened
Output: (M_x F_, M_x F), currently usingM_=M_ =1
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GNN results - efficiency

CNN results:

v efficiency > 90% from 14 GeV

X minimum efficiency 2% for leading and
10% for subleading track

v bg efficiency 0.17%

X larger model compared to prototype
(8.4k 6 bit par vs 1k 3 bit)

Preliminary GNN results:

v efficiency > 90% before CNN

¢ minimum efficiency 5%

v fewer parameters (5.2k) than CNN (8.4k)

Conclusion: keep developing GNN architecture

Efficiency of detection
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Implementation - status

current stage

Reco MLPs B GNN
pooling
Implemented through  Custom MLPs + matrix
his4ml implementation product,
currently being implementable
Latency (preliminary):  worked on through hls4ml
59 ns

Graph
building

Custom
implementation
required

Graph building algorithm inspired by: Graph Neural Networks for Charged Particle Tracking on FPGAs,

Real-time Graph Building on FPGAs for Machine Learning Trigger Applications in Particle Physics
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Future developments

e Ongoing work on extension of GNN to include classification, as well as
multi-track reconstruction

e Inclusion of ¢ reconstruction
e Inclusion of other input features (such as magnetic field)
e Architecture optimization:

o ensemble of shallower GNNs

o quantization-aware training

19



Thank you for your attention



Compression methods

Pre-trained teacher

Gitpe
i Soft label
T - ——
|
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Student

Knowledge Distillation (KD):
transfers learned properties from a
large Teacher to a smaller Student
Compute distance between
intermediate representations of
Teacher and Student

Add distance to loss when Student is
underperforming

e Reduce weight and activation bit widths

e Quantization Aware Training (QAT)
simulates quantization during training

e Learned weights are more easily quantized

A

Weight value Activation function
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Knowledge Distillation

Pre-trained teacher

Hint losses: squared L2
distances of the

3 -convaD

@ -Relu

@ - MaxPooling2D
@ -Flatten

@ -Dense

________________________________ Truth label
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depths Gy -

Student

Student loss
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otherwise
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Eur. Phys. ]. C 81, 969 (2021)
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Quantization

2i-b+lc1ip (round (;U : 2‘?—2'—1) b=l gb-1 _ 1)

Weight value Activation function

Fake quantization applied at each layer during training: precision error is

automatically accounted for in the loss
Straight-through estimator used for fake quantization during backpropagation

e Actual quantization applied after training
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CNN -1/0

Input:

images with pixels
corresponding to hits
separate single track
images ORed to make
multi-track images (O,
1, 2 or 3 muons per
image)

Output:

n of muons in event (0, 1, 2 or 2+)
reconstruction (n, p;, q) of up to 2 leading
tracks

output tensor:

L[N, 9y, Prys N [N 9y Py N

output vectors are zeroed when no
corresponding muon is IDed

¢ reconstruction not included
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CNN - input

(station indices) x (discretized n coor.)

One column of pixels per n bin (384) 3
4x384 images, reshaped to 4x192x2, one
channel with even n indices, one with odd |

One row of pixels per station (4)

N

e Hits obtained by reducing the original 9
layers:
o 2/3for SO, OR for other stations
o pixel value keeps track of number of
active pixels reduced (2 or 3 for SO, 1 or
2 for the rest) 0]
e Average density of 3 muon images is 3%

station index

=

0 100 200 300
n index
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CNN - multi-track reconstruction

Teacher (unconstrained) model scales poorly with max number of muons per event
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CNN - efficiency

Lowest cut studied (6 GeV) shows that, while performance on leading track
reconstruction is good, rejection of subleading muons below threshold is not.
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n true

CNN - classification

g of leading track:

- 0 0.00012 0.029
" e e 0 for bgevents
e good accuracy
-0 . .
o o8 e very similar performance
on other tracks
—~-0.0051 gueRcl:aM 0.011 0.00029 -0.4
0 0 -0.2
° ~- 0.025  0.0069 o8
0 1 2 3
n pred -0.0 0.6
Q
i 2 o- 0.00037 0.00045
n of tracks in event: - -
e Ofor bgevents
e good accuracy ~ 00071 0024
e used for bg suppression in the |
reconstruction task ‘ o Ared !
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GNN - motivations

e More efficient for sparse data
(4x384 images vs max 50 nodes)

e Adaptable to complex geometries
(direct use of strip coordinates)

e Straightforward inclusion of other local features
(¢ measurement, magnetic field)

e Hopefully able to reconstruct different muons
as separate tracks

number of events
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GNN- graph statistics
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Development pipeline

Keras
TensorFlow
PyTorch

Compressed
model

Machine learning model
optimization, compression

https://github.com/fastmachinelearning/hls4ml

) hls 4 m

i

Vivad
HLS

0d o
conversion
~

Tune configuration
latency, throughput,
ower, resource usage,

FPGA flow

ASIC flow
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