16–20 Jun 2025
THotel, Cagliari, Sardinia, Italy
Europe/Rome timezone

Physics Instrument Design with Reinforcement Learning

Not scheduled
20m
THotel, Cagliari, Sardinia, Italy

THotel, Cagliari, Sardinia, Italy

Via dei Giudicati, 66, 09131 Cagliari (CA), Italy
Parallel talk Hardware & Design

Speaker

Shah Rukh Qasim (University of Zurich)

Description

We present a case for the use of Reinforcement Learning (RL) for the design of physics instrument as an alternative to gradient-based instrument-optimization methods (arXiv:2412.10237). It's applicability is demonstrated using two empirical studies. One is longitudinal segmentation of calorimeters and the second is both transverse segmentation as well longitudinal placement of trackers in a spectrometer. Based on these experiments, we propose an alternative approach that offers unique advantages over differentiable programming and surrogate-based differentiable design optimization methods. First, Reinforcement Learning (RL) algorithms possess inherent exploratory capabilities, which help mitigate the risk of convergence to local optima. Second, this approach eliminates the necessity of constraining the design to a predefined detector model with fixed parameters. Instead, it allows for the flexible placement of a variable number of detector components and facilitates discrete decision-making. We then discuss the road map of how this idea can be extended into designing very complex instruments. The presented study sets the stage for a novel framework in physics instrument design, offering a scalable and efficient framework that can be pivotal for future projects such as the Future Circular Collider (FCC), where most optimized detectors are essential for exploring physics at unprecedented energy scales.

More: https://arxiv.org/abs/2412.10237

AI keywords Reinforcement Learning; Machine Learning; Physics Instrument Design; Detector Optimization; AI-Based Experiment Design

Primary authors

Nicola Serra (University of Zurich) Patrick Owen (University of Zurich) Shah Rukh Qasim (University of Zurich)

Presentation materials

There are no materials yet.