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Instrument Design is challenging
• The ideas presented here aren’t limited to physics instrument

• Here we have the SHiP experiment and the Muon Shield


• We have been involved in these studies for about a year now


• Lesson: Design of every single component is a lot of work


• Months of effort, sometimes years


• I believe we can do much better
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For the Muon Shield
• You got a bunch of 

parameters


• It’s a strong 
assumption that 
you can define an 
instrument by a 
set of parameters


• Let me get back to 
this in a bit


• And then simulate 
and test designs
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• Developed magnetic field simulation in-house because other software (COSMOL etc) were 
simply too cumbersome to use


• Used custom CUDA kernels to make that point cloud to regular grid interpolation faster
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Simulation is hard
• Simulation is expensive and hard and will remain a 

limitation for a while


• In some cases, the simulation does connect to 
simulation surrogates (like GANs, VAEs)


• You are lucky


• In our case, it takes  seconds using  
CPU cores


• We developed a complex pipeline where we are 
using Google Cloud to allocate workloads on 
remote clusters efficiently


• Right now we are using 1500 CPU cores 
continuously

𝒪(10) 𝒪(100)



Bayesian Optimization
• You have your blackbox 

function (simulation)


• Test at N points


• Choose point 
based on where you will 
gain the most information


• Continue till you are done


• The problem is it doesn’t 
scale well because one 
needs to do matrix 
inversions

(N + 1)th
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• Learn more at our poster: Design of the SHiP's Muon Shield with Machine Learning (Luís Felipe Cattelan)



Gradient Based Optimization

• Originally proposed in arXiv:2002.04632


• Was in fact demonstrated on the Muon Shield


• We think for the Muon Shield Optimization as defined, Bayesian Opt. Works better


• Differentiable method is of course more scalable


• Although this is not necessarily a good thing 

• But now is the principal approach being studied for physics experiment optimization 
https://mode-collaboration.github.io/#about


• There are efforts to make everything differentiable, including Geant4
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We take a different view
• Local optimizations


• It is dangerous to compare this to 
Neural Network optimization with 
gradients


• NNs have A LOT of randomly 
defined: locally unstable


• No such guarantee with design 
parameters which map to a 
physical quantities even in a very 
non-linear fashion
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We take a different view
• In general, it is hard to define an instrument as a set of parameters


• The number of parameters will vary, depending on how many sub-
components are placed within a design


• Let’s say each magnet has 10 parameters, a design with 5 magnets will 
have 50 and a design with 6, 60.


• In some cases, the number of combinations will scale exponentially


• Can also make discrete choices


• Choosing the material in a detector for example


• And finally, reward function being differentiable or not
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Solution: Reinforcement Learning
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• Take actions


• These actions are contextually dependent


• We end up in very different states as we 
take these actions


• And then idea is to “reinforce” the 
contextually dependent actions that led to 
the best outcome


• Temporal credit assignment (TD learning / 
Monte Carlo etc)


• Increase the probability of these actions 
being taken (learning the policy)



RL allows exploration
• And balance it with exploration

• These random actions brings you to states that are very different from each other


• One needs to be able to reach varying rewards to allow exploration and optimization and cold start is a problem


• If you are training an agent to play chess while it learns only from the a super good bot. It will always get a 
reward of 0 => no training possible


• Finding globally optimal solution is not a magic in RL


• Framework allows it


• A lot of work has been performed
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Reinforcement Learning for Design
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We did this with a toy calorimeter
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And with a spectrometer design
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Results
• Can work better than baseline designs


• Don’t read too much into the numbers but just to illustrate a point

Calo

Spectro
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Conditional
• Learn conditionally!


• Whenever the agent is designing an 
instrument at the start of the episode, 
it knows what the budget


• And we sample the budgets 
randomly


• The agent will learn to design the 
instrument according to different 
budgets
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Some preliminary results
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More concretely
• This will be useful for physics experiments


• You have many different teams designing different 
subcomponents


• The best design depends on how the other 
components are designed 


• We have meetings where we discuss how the 
other components are going


• We propose: train a robust agent which spits 
out different designs within the expected 
vicinity 


• RL will allow design of different instrument 
separately before putting it all together


• This will also allow us to re-use R&D from other 
experiments further


• True even if you are not expecting the agent do 
discover a magic solution
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SHiP Experiment Further studies
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• Easy-to-do tasks


• If we re-write the simulation: slow rollouts/querying remains a limitation at the 
moment (but will improve in the future) 


• Placement of sensor layers for monitoring system of the Muon Shield


• Design of the VETO system


• Harder


• Faster Muon Simulation


• We managed to collect step data from Geant4


• And use alias sampling CUDA code to transport Muons through matter


• Includes inelastic scattering and multiple scattering and works as long as 
particles don’t decay into other particles (there are other solutions to that)


• Incredibly fast, orders of magnitude faster than Geant4


• Contextual / Conditional RL will find workarounds 



Challenges and opportunities
• Biggest limitation:


• Querying is slow


• Future: surrogate simulation


• If you are a computing expert, you can find ways around and already start using 
these methods


• Researched can be performed along many lines:


• For example, for the Muon Shield, find a strategy for intelligent sampling. A bad 
design can be discarded right from the start and one doesn’t need to test it on 
a billion samples (which is computationally expensive)


• Better exploration algorithms specifically designed for “Design”
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Rest



Muons Rate

• Sensitive plane:  

•  

•  

•  *

Δx = 4.2m

Δy = 6m

z = 82m

ℒM =
N

∑
i=1

(1 +
Q ⋅ x(ψ) − Δx/2

Δx )

23*Origin is the beginning of Hadron Absorber



Cost function

• Total cost: 

•    𝒞 =
∑i Ci − 𝒞0

𝒞0
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We will represent costs in the toy currency Peanut ( )∞



Loss function

ℒ = (1 + e10𝒞) 1 +
N

∑
i=1

(1 +
Q ⋅ x(ψ) − Δx

2Δx )
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Loss with constraints

•   

•

ℒ = (1 + e10𝒞) 1 +
N

∑
i=1

(1 +
Q ⋅ x(ψ) − Δx

2Δx )

ℒ(Ψ) = ℒ + λ
6

∑
i

2

∑
j

max(0,Ci,j(Ψ))2 + max(0,Lmax − L)2

•  

•  

•  

•

C(x) = (ΔX − xwall) + (ΔY − yfloor)

xwall(z) = {3.54m, if z ∈ TCC8
4.54m, ifz ∈ ECN3

yfloor(z) = {1.68m, if z ∈ TCC8
3.34m, ifz ∈ ECN3

Lmax = 29.65m

ΔX = ΔXmgap + ΔXcore + ΔXgap + ΔXyoke

ΔY = ΔYcore + ΔYgap + ΔXyoke

*2cm of gap between magnet and cavern
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