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Instrument Design is challenging

* The ideas presented here aren’t limited to physics instrument
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 Here we have the SHIP experiment and the Muon Shield
 We have been involved in these studies for about a year now
* Lesson: Design of every single component is a lot of work
 Months of effort, sometimes years

e | believe we can do much better

~“6m

~12m

0 10 20 30 40 50 60 70 80

et
“‘
“‘
“




For the Muon Shield

* You got a bunch of
parameters

* |t's a strong
assumption that
you can define an
iInstrument by a
set of parameters

| et me get back to
this in a bit

* And then simulate
and test designs
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Simulation is hard

* Simulation is expensive and hard and will remain a
limitation for a while

 In some cases, the simulation does connect to
simulation surrogates (like GANs, VAEs)

e You are lucky

* In our case, it takes O(10) seconds using ©(100)
CPU cores

 We developed a complex pipeline where we are
using Google Cloud to allocate workloads on
remote clusters efficiently

* Right now we are using 1500 CPU cores
continuously
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Bayesian Optimization
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Muon Library

 Developed magnetic field simulation in-house because other software (COSMOL etc) were

simply too cumbersome to use

 Used custom CUDA kernels to make that point cloud to regular grid interpolation faster
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Bayesian Optimization

* You have your blackbox
function (simulation)

 Jest at N points

» Choose (N + 1)"point
based on where you will
gain the most information

e Continue till you are done

 The problem is it doesn’t
scale well because one
needs to do matrix
INnversions
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Tokanut v3

Tokanut v2
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Z vs. X Distribution

Z vs. X Distribution

Z vs. X Distribution
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Design of the SHiP's Muon Shield with Machine Learning (Luis Felipe Cattelan)

Learn more at our poster



Gradient Based Optimization

Sampled Simulator i
Inputs inputsand  p—> onlditrerentinble) s  Outputs |
parameters )
e e e e e e g e e e e e e e e e e I
Train
SEl[plise Simulator surrogate
Parameters inputsand > (Differentiable) | Outputs +—»| Objective
parameters |
VR(yy)

Originally proposed in arXiv:2002.04632

Was in fact demonstrated on the Muon Shield

* We think for the Muon Shield Optimization as defined, Bayesian Opt. Works better

e Differentiable method is of course more scalable

* Although this is not necessarily a good thing

But now is the principal approach being studied for physics experiment optimization

https://mode-collaboration.github.io/#about

There are efforts to make everything differentiable, including Geant4



https://mode-collaboration.github.io/#about

We take a different view

* | ocal optimizations

* |t is dangerous to compare this to T i
Neural Network optimization with + | | 9lobalmaximum -
gradients Lo\ maXimU>\ )

* NNs have A LOT of randomly o\
defined: locally unstable L \\Z >/ _

local minimum

* No such guarantee with design 4 global minimum -
parameters which map to a L | | | -
physical quantities even in a very o 02 04 06 08 1 12

non-linear fashion



We take a different view

* |n general, it is hard to define an instrument as a set of parameters

 The number of parameters will vary, depending on how many sub-
components are placed within a design

* |et’s say each magnet has 10 parameters, a design with 5 magnets will
have 50 and a design with 6, 60.

* |n some cases, the number of combinations will scale exponentially

e Can also make discrete choices

 Choosing the material in a detector for example

* And finally, reward function being differentiable or not
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Solution: Reinforcement Learning

 [ake actions
 [hese actions are contextually dependent

 We end up In very different states as we
take these actions

e And then idea is to “reinforce” the
contextually dependent actions that led to
the best outcome

 Temporal credit assignment (TD learning /
Monte Carlo etc)

* |Increase the probability of these actions
being taken (learning the policy)
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Buddy Learns to Fetch a Ball
Goal: Get the ball and bring it back to get treat




RL allows exploration

 And balance it with exploration

if a = arg max, Q(s, a’)

otherwise

 These random actions brings you to states that are very different from each other
* One needs to be able to reach varying rewards to allow exploration and optimization and cold start is a problem

 |If you are training an agent to play chess while it learns only from the a super good bot. It will always get a
reward of 0 => no training possible

* Finding globally optimal solution is not a magic in RL
 Framework allows it

* A lot of work has been performed
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Environment

Reward R,

Reinforcement Learning for Design

Partially Observable \

>

Observation O,
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Action A,
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S(#) = Design at step ¢
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We did this with a toy calorimeter

Design of Sampling Calorimeter with PPO
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Spectrometer Design with Reinforcement Learning
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Results

 Can work better than baseline designs

 Don’t read too much into the numbers but just to illustrate a point

Spectro

10 GeV Eff 10 GeV Res | 100 GeV Eff 100 GeV Res
Baseline design 1 | 89.0695 £0.1275 | 6.48 +0.03 98.0982 £ 0.0558 | 13.83 = 0.06
Baseline design 2 | 93.7342 +£0.0989 | 5.97 +0.03 99.1317 £ 0.0379 | 13.15£0.05
RL design 100.0000 + 0.0000 | 3.74 4 0.02 99.9417 £+ 0.0099 | 7.87 £ 0.03

Calo

50 GeV EM | 100 GeV EM | 50 GeV Had | 100 GeV Had
Baseline design | 8.24 + 0.16 5.94 4+ 0.12 34.13 + 0.68 24.48 £+ 0.49
RL design 8.15+ 0.16 5.83 +0.12 25.27 £ 0.51 17.79 £ 0.36
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Conditional

* | earn conditionally!

 Whenever the agent Is designing an
instrument at the start of the episode,
It knows what the budget

 And we sample the budgets
randomly

 The agent will learn to design the
instrument according to different
budgets
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Some preliminary results
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More concretely SuperNut v2

Weighted Momentum Distribution in TR1 with HsF filter

PO = [0,400] GeV/c
Particles: 1362
Rate of events processed: 1.00e+00

Rate: 54.22+ 5.37 kHz

* You have many different teams designing different 5 = Rate [Hz]
| } Associated Error

subcomponents

* This will be useful for physics experiments

10° 1

51.50 kHz
-

* The best design depends on how the other -5
components are designed

y 0.61 kHz
0.98 kHz
1 0.78 kHz

t

Rate [Hz]
y 0.11 kHz

103

 We have meetings where we discuss how the ; ]
other components are going :

0.04 kHz

> b i
« We propose: train a robust agent which spits 10 ; D 5 I ¥ opnik
out different designs within the expected 5 S 2 T T 2 Sg9Sg |78
I 1 A | IPH A
101 . R | r]—' e I — Tm T - T - TT‘ e
* RL will allow design of different instrument 0 50 100 10 200 250 300 350
Final Momentum [GeV/c] in TR1 with HsF filter

separately before putting it all together

 This will also allow us to re-use R&D from other ]
experiments further Rate bouncing P, € [0,400] GeV/c 3 kHz
Rate = 54 kHz

* True even if you are not expecting the agent do

discover a magic solution
19



2D Histogram: z vs transverse loss

- 10

SHIP Experiment Further studies -

 Easy-to-do tasks g5 o0

* If we re-write the simulation: slow rollouts/querying remains a limitation at the
moment (but will improve in the future)

—17.5 A 10

* Placement of sensor layers for monitoring system of the Muon Shield
» Design of the VETO system e s e e ho e e e Y
* Harder |
e Faster Muon Simulation —4 T |

 We managed to collect step data from Geant4

_2 ]
* And use alias sampling CUDA code to transport Muons through matter )

W _a
* Includes inelastic scattering and multiple scattering and works-aglon ‘s’,\"/
: , . : \ 2N
particles don’t decay into other particles (there are other soluttons tg Iﬁ) .
X
* Incredibly fast, orders of magnitude faster than Geant4 2 1

 Contextual / Conditional RL will find workarounds
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Challenges and opportunities

* Biggest Iimitation;
e Querying is slow
* Future: surrogate simulation

* |f you are a computing expert, you can find ways around and already start using
these methods

 Researched can be performed along many lines:

* For example, for the Muon Shield, find a strategy for intelligent sampling. A bad
design can be discarded right from the start and one doesn’t need to test it on

a billion samples (which is computationally expensive)

» Better exploration algorithms specifically designed for “Design”
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Muons Rate
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*Origin is the beginning of Hadron Absorber 23



Cost function

The cost C; for magnet i is
* Total cost: Bhalkie
Zl. C.— %6, Ci = WiKkyoke + MiKcoil + Qi T KEDE
o % — Yoke Coil Operation
G
Variable Meaning Depends on
W; Iron yoke mass geometry, density
M; Coil mass geometry, density
Qi Power consumption  geometry, MMF, J:ar, conductivity
T Operation time always 72’000 h

Table: The variables for the cost estimation.

We will represent costs in the toy currency Peanut (co)
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.oss function




.oss with constraints

N
,g=<1+ew%>[1+z (1 : Q"‘é"ﬁ‘“)]
X

ol

6 2
M) =ZL+1 [Z Z max(0,C; j(‘P))z + max(0,L,, . — L)?
J

l

¢ C(X) — (AX — Xwall) + (AY — yflOOl")
3.54m, itz € TCCS
® Xya(2) =

4.54m, ifz € ECN3 —
AX = AX, o0y + BAX pre + AX, ), + AX e
.y (o [1:68m ifzETCCS
HoorI =\ 3.34m,  ifz € ECN3 AY = AY,,., + AY,,, + AX

L =29.65m

*2cm of gap between magnet and cavern
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