29–31 Oct 2024
Padova
Europe/Rome timezone

Solving the homogeneous Bethe-Salpeter equation with a quantum annealer

30 Oct 2024, 17:05
20m
Sala Elettra (Palazzo della Salute)

Sala Elettra

Palazzo della Salute

Via San Francesco, 90 - Padova

Speaker

Filippo Fornetti (Istituto Nazionale di Fisica Nucleare)

Description

The homogeneous Bethe-Salpeter equation (hBSE) [1], which models a bound system within a fully relativistic quantum field theory, has been solved for the first time using a D-Wave quantum annealer [2]. Following standard discretization methods, the hBSE in the ladder approximation can be reformulated as a generalized eigenvalue problem (GEVP) involving two square matrices, one symmetric and the other non-symmetric ( see Ref. [3] for details). This problem is of significant interest in various scientific fields, making the results broadly impactful. The non-symmetric matrix presents a challenge for a formal approach to solving the GEVP on a quantum annealer, as it needs to be converted into a quadratic unconstrained binary optimization (QUBO) problem. We have developed a hybrid algorithm. First, we reduce the non-symmetric GEVP to a standard eigenvalue problem classically. Then, we employ the QA to solve the variational problem. Drawing inspiration from approaches for symmetric matrices [4], we generalize the algorithm to accommodate the non-symmetric case, which involves complex eigenvalues (see Ref. [5] for details). A thorough numerical evaluation of the proposed algorithms, applied to matrices of up to 64 dimensions, was conducted using the proprietary simulated annealing package and the D-Wave Advantage 4.1 system thanks to the D-Wave-CINECA agreement[6], as part of an international project approved by Q@TN (INFN-UNITN-FBK-CNR)[7]. The results show excellent agreement with classical algorithms and reveal promising scalability properties.

[1] E. E. Salpeter and H. A. Bethe, A relativistic equation for bound-state problems, Phys. Rev. 84, 1232 (1951)
[2] F.Fornetti., A.Gnech, T. Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta, and M.Viviani, Solving the homogeneous Bethe-Salpeter equation with a quantum annealer, Phys. Rev. D 110 (2024) 5, 056012
[3]T. Frederico, G. Salmè, and M. Viviani, Quantitative studies of the homogeneous Bethe-Salpeter equation in Minkowski space, Phys. Rev. D 89, 016010 (2014)
[4] B. Krakoff, S. M. Mniszewski, and C. F. A. Negre, A QUBO algorithm to compute eigenvectors of symmetric matrices, (2021), arXiv:2104.11
[5] S. Alliney, F. Laudiero, and M. Savoia, A variational technique for the computation of the vibration frequencies of mechanical systems governed by nonsymmetric matrices, Applied mathematical modeling 16, 148 (1992)
[6]https://www.quantumcomputinglab.cineca.it/en/2021/05/12/collaboration-agreement-between-cineca-and-d-wave-for-the-distribution-in-italy-of-quantum-computing-resources/
[7] https://quantumtrento.eu/

Sessione Studi fondazionali

Primary authors

Alessandro Roggero (Istituto Nazionale di Fisica Nucleare) Alex Gnech (Old Dominion University and Jefferson Laboratory) Filippo Fornetti (Istituto Nazionale di Fisica Nucleare) Francesco Pederiva (Istituto Nazionale di Fisica Nucleare) Giovanni Salme' (Istituto Nazionale di Fisica Nucleare - Roma) Matteo Rinaldi (Istituto Nazionale di Fisica Nucleare) Michele Viviani (Istituto Nazionale di Fisica Nucleare) Sergio Scopetta (Istituto Nazionale di Fisica Nucleare) Tobias Frederico (Instituto Tecnologico de Aeronautica)

Presentation materials