

A.D. 1308 unipg

UNIVERSITÀ DEGLI STUDI **DI PERUGIA**

Solving the homogenous Bethe-Salpeter equation with a quantum annealer

Filippo Fornetti (Università degli Studi di Perugia, INFN Sezione di Perugia) Alex Gnech (Old Dominion University, Jefferson Laboratory) Tobias Frederico (ITA Brasil) Francesco Pederiva (Università di Trento, INFN-TIFPA) Matteo Rinaldi (INFN Sezione di Perugia) Alessandro Roggero (Università di Trento, INFN-TIFPA) Giovanni Salmè (INFN, Sezione di Roma) Sergio Scopetta (Università degli Studi di Perugia, INFN Sezione di Perugia) Michele Viviani (INFN Sezione di Pisa)

Introduction to the physics problem

Our aim is to apply a variational method, tailored to a Quantum Annealer, for solving the homogeneous Bethe-Salpeter equation (hBSE) in Minkowski momentum-space

[E.E Salpeter and H.A. Bethe, Phys. Rev. 84, 1232 (195)]

 $\phi_b(k,p) = G_0^{(12)}(k,p) \left[\frac{d^4k'}{(2\pi)^4} i \mathscr{K}(k,k',p) \phi_b(k',p), \text{ with } p = p_1 + p_2 \text{ and } k = \frac{p_1 - p_2}{2} \right]$

In relativistic quantum-field-theory, this equation has the same role in the bound state description that the Schrödinger equation has in non relativistic quantum mechanics

We consider the hBSE describing a bound system composed by two massive scalars interacting through the exchange of a massive boson.

The hBSE in this case can be written as a Non Symmetric Generalized Eigenvalue Problem (GEVP) adopting a standard discretization method*

*T.Frederico, G.Salmè, and M.Viviani, Phys. Rev. D 89, 016010 (2014)

hBSE as a Generalized Eigenvalue Problem (GEVP)

[T.Frederico, G.Salmè and M.Viviani, Phys. Rev. D 89, 016010 (2014)]

$$A \mathbf{v}_i = \lambda$$

- interaction.
- We are interested only in the in the eigenpair corresponding to the largest, real and **positive eigenvalue** λ_n , since $\lambda_n = - \alpha_n$
- α_n is the minimal coupling constant that allows the existence of a bound system with a given mass M = 2m - B

energy $\frac{\mu}{\mu} = 1.0$ and with an exchanged boson of mass $\frac{\mu}{\mu} = 0.15$ M

$$a_i B \mathbf{v}_i$$

• The eigenvalues are $\lambda_i = \frac{1}{\alpha_i}$, where $\alpha_i = \frac{g_i^2}{32\pi^2}$, with g_i the **coupling constant** of the

We are using $(n \times n)$ matrices obtained by the discretization of the hBSE with binding M

UNITN-FBK-CNR), we used the QA Advantage 4.1 provided by D-Wave Systems

Wave software

the logical qubits of the original problem with a larger number of physical qubits

With the **Simulated Annealing (SA)**, the original problem can be directly solved without the an embedding procedure

- Thanks to the **D-Wave-Cineca** agreement, as part of an international project approved by Q@TN(INFN-
- The transverse-Ising Hamiltonian that represents the problem to minimize is encoded into the target topology (**PEGASUS**) through an **embedding procedure**, with a heuristic algorithm provided by the D-

- To properly translate the problem on the topology of the hardware, the embedding needs to represent

Formulate a QUBO problem

Goal: Write the GEVP as a problem suitable by the QA First step: write the non symmetric GEVP as a variational problem*

$$f(A, B, \mathbf{v}, \tilde{\lambda}) = \mathbf{v}^T [A - \tilde{\lambda}B]^T [A - \tilde{\lambda}B]$$

The **objective function (OF)** is minimized by all the eigenvectors **v**:

$$f(A, B, \mathbf{v}, \hat{\lambda}) = 0 \Rightarrow \lambda^{R}(\mathbf{v}) = \mathbf{v}^{T} \frac{AB^{T}}{M}$$

$$\lambda(\mathbf{v}) = \lambda^R(\mathbf{v}) \pm i\lambda^I(\mathbf{v}) \Rightarrow \text{We want } \lambda$$

Second step: decompose the *B* matrix to transform the GEVP into a non symmetric eigenvalue problem with the standard LDL decomposition

$$CL^{T}\mathbf{v}_{i} = \lambda_{i}L^{T}\mathbf{v}_{i}, \ \mathbf{w}_{i} = L^{T}\mathbf{v}_{i}$$
$$f(C, \mathbf{w}, \tilde{\lambda}) = \mathbf{w}^{T}[C - \tilde{\lambda}I]^{T}[C - \tilde{\lambda}I]\mathbf{w} = \mathbf{w}^{T}S(\tilde{\lambda})\mathbf{w} \ge 0$$

We have to exploit the **non singularity** of B

*S. Alliney, F. Laudiero and M. Savoia, Applied mathematical modelling 16, 148 (1992)

- $\mathbf{v} \geq \mathbf{0}$
- $^{T} + B^{T}A$ 2 $\lambda^{I}(\mathbf{v}) = 0$

Formulate a QUBO problem

 $C_{n,b} = [0,1]^{n*b}$. After a single annealing cycle the QA returns:

We need to approximate our quadratic form into a QUBO one, rewriting the matrices elements in a **binary basis**

$$\mathbf{w} \simeq P^T \mathbf{x} \Rightarrow w_{\alpha} = -q_{b,\alpha} + \sum_{i=1}^{b-1} \frac{q_{i,\alpha}}{2^i} \quad P^T = diag(\mathbf{p}^T, \dots, \mathbf{p}^T) \quad \mathbf{p} = (-1, \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2^{b-1}})$$

$$\mathbf{w} = (w_1, w_2, \dots, w_n)^T \in [-1, 1[^n \Rightarrow \mathbf{x} = (q_{1,1}, \dots, q_{b,1}, \dots, q_{1,n}, \dots, q_{b,n})^T \in C_{n,b}$$

$$f(C, \mathbf{w}, \hat{\lambda}) = \mathbf{w}^T S(\hat{\lambda}) \mathbf{w} \simeq 1$$

The QA is designed to deal with transverse-Ising model and QUBO problems in an hypercube

 $\mathbf{x} = \arg\min_{\mathbf{x}\in C_{n,b}} \mathbf{x}^T Q \mathbf{x}$

Gershgorin Theorem

$$f(C, \mathbf{w}, \hat{\lambda}) = \mathbf{w}^T [C - \hat{\lambda} I]^T [C - \hat{\lambda} I] \mathbf{w} = \mathbf{w}^T \mathcal{L}$$

We must set $\tilde{\lambda} \simeq \lambda_n$ if we want to obtain \mathbf{W}_n from a QA cycle

We can guide the "guess phase" by using the Gershgorin circle theorem*:

$$\mathscr{C}_i: |y - c_{ii}| = \leq \sum_{j \neq i} |c_{ij}| = R_G(c_{ii}) \qquad c_i$$

If a circle \mathscr{C}_i is disconnected from the others then it contains one ad only one real eigenvalue

only the solutions $\in \mathscr{C}_N$

* R. S. Varga, "Gershgorin and his circles", Vol. 36 (Springer Science & Business Media, 2010)

- r_{ii} elements of C
- If \mathscr{C}_N is disconnected from the others, we can set $\tilde{\lambda} = c_{11} > c_{22} > c_{33}...$ and we select

Algorithm I: Guess Phase

$$f(C, \mathbf{w}, \hat{\lambda}) = \mathbf{w}^T S(\hat{\lambda}) \mathbf{w} \simeq \mathbf{x}^T P S(\hat{\lambda}) P^T \mathbf{x} = \mathbf{x}^T P S(\hat{\lambda}) P^T \mathbf{x}$$

We analyze the set $\{\mathbf{w}_{\alpha}, f(C, \mathbf{w}, \hat{\lambda})\}$

We eliminate the solutions outside the disc \mathscr{C}_n

Among the surviving solutions, we take the one that satisfies:

$$f_{best}^{GP} = \min_{\mathbf{w}_{\alpha}} f(A, \mathbf{w}_{\alpha}, \hat{\lambda} = \lambda^{R}(\mathbf{w}_{\alpha}))$$

Gradient-Descent phase in order to improve the precision on that solution

After $\alpha = 1, ..., N_A^{GP}$ annealing cycles, the QA or the SA returns N_A^{GP} binary vectors $\{\mathbf{x}_{\alpha}\}$

$$= c_{11}), \lambda^{R}(\mathbf{w}_{\alpha}), \lambda^{I}(\mathbf{w}_{\alpha})\}$$

At the end of the Guess Phase the best eigenpair $(\mathbf{w}_{\alpha_{CP}}, \lambda^{R}(\mathbf{w}_{\alpha_{CP}}))$ is passed to the

• Single run on the SA ($N_A^{GP} = 2000$) for a 32x32 matrix

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys. Rev. D 110 (2024) 5, 056012

Algorithm II: gradient-descent

Gradient-descent (GD): iterative algorithm that founds a new solution $\mathbf{w}^{(z)}$

$$\mathbf{w}^{(z)} = \mathbf{w}^{(z-1)} + \frac{1}{2}$$

The **OF** can be expanded around $\mathbf{w}^{(z-1)}$:

$$f(C, \mathbf{w}^{(z)}, \tilde{\lambda}) = f(C, \mathbf{w}^{(z-1)}, \tilde{\lambda}) + \mathbf{w}^{(z-1)T} S(\tilde{\lambda})$$

New **OF**: $\hat{f}(C, \delta(z), \hat{\lambda}) = \delta(z)^T \mathcal{Q}(z, \hat{\lambda}) \delta(z)$

- At the end of the GP of the algorithm we find a solution $\mathbf{w}^{(z=0)} = \mathbf{w}_{\alpha_{GP}}$

 - $\frac{1}{2z}\delta(z)$

 $\tilde{\lambda})\delta(z) + \delta(z)^T \frac{S(\lambda)}{2} \delta(z)$

 $\mathcal{Q}(z,\tilde{\lambda})_{ij} = \frac{1}{2} S(\tilde{\lambda})_{ij} + \delta_{ij} [\mathbf{w}^{(z-1)T} S(\tilde{\lambda})]_i$

10

Algorithm II: gradient-descent

$$\lambda_{best} = \lambda(\mathbf{w}^{(z-1)}) \text{ and } \mathbf{w}_{best} = \mathbf{w}^{(z-1)}$$

At each zoom step z ($z = 1, ..., z_{max}$) an inner loop is opened $i^z = 1, 2, ...$

Among the ensemble we select the one with the minimal energy:

$$\hat{f}_{best;i}^{DP}(z) = \min_{\delta_{\alpha_i}(z)} \hat{f}(C, \mathbf{w}_{\alpha_i}^z, \lambda = \lambda_{best})$$

If $\lambda^{R}(\mathbf{w}_{best}^{z}) \geq \lambda_{best}$ we pass the next zoom step z + 1. $i_{max}^{z} = i^{z}$

 i_{max}^{χ} : iterations needed to find the **best solution for each** χ

z=1

Total annealing time: $T \propto N_A^{GD} \sum_{max}^{z_{max}} i_{max}^{z_{max}}$

- The QA or the SA returns en ensemble of $\alpha_i = 1, ..., N_A^{GD}$ qubits states $\{\mathbf{x}_{\alpha_i}\}$

11

- **Trade-off between** b and z_{max} , already found in the symmetric case *
- * B. Krakoff, S. M. Mniszewski and C. F. A. Negre, arXiv:2104.11 (2021)

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys. Rev. D 110 (2024) 5, 056012

• 500 independent samples on the SA ($N_A^{GP} = 200, N_A^{GD} = 20$) for a 32x32 matrix

n_M	b	N_{run}	λ_{true}	$ar{\lambda}_{best}$	$ar{\lambda}^{I}_{best}/ar{\lambda}_{best}$	$ \mathbf{v}_{true} - \mathbf{v}_{best} $
4	3	80	0.188026	$0.188012_{-7\cdot 10^{-6}}^{+1\cdot 10^{-5}}$	$0.00024_{-5\cdot10^{-6}}^{+2\cdot10^{-5}}$	$0.00024_{-2\cdot 10^{-5}}^{+3\cdot 10^{-5}}$
8	3	80	0.188204	$0.18820_{-2\cdot 10^{-5}}^{+2\cdot 10^{-5}}$	$0.0003_{-1\cdot 10^{-4}}^{+1\cdot 10^{-4}}$	$0.0003_{-1\cdot 10^{-4}}^{+1\cdot 10^{-4}}$
12	3	80	0.188203	$0.18821_{-2\cdot10^{-5}}^{+2\cdot10^{-5}}$	$0.0005_{-1\cdot 10^{-4}}^{+1\cdot 10^{-4}}$	$0.0006_{-1\cdot 10^{-4}}^{+2\cdot 10^{-4}}$
16	2	80	0.188203	$0.18820_{-3\cdot 10^{-5}}^{+4\cdot 10^{-5}}$	$0.0009_{-1\cdot10^{-4}}^{+1\cdot10^{-4}}$	$0.0011_{-2\cdot10^{-4}}^{+2\cdot10^{-4}}$
24	2	80	0.188225	$0.18822_{-4\cdot 10^{-5}}^{+5\cdot 10^{-5}}$	$0.0013_{-3\cdot 10^{-4}}^{+1\cdot 10^{-4}}$	$0.0015_{-2\cdot 10^{-4}}^{+3\cdot 10^{-4}}$
32	2	200	0.188225	$0.18823_{-3\cdot 10^{-5}}^{+4\cdot 10^{-5}}$	$0.0016_{-2\cdot 10^{-4}}^{+2\cdot 10^{-4}}$	$0.0018^{+4\cdot10^-4}_{-3\cdot10^-4}$

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012

• $z_{max} = 9$

• Euclidean distance and magnitude of the imaginary part slightly increase with $n_M \times b$

• 4×4 matrices with b = 3. $N_{run} = 1000$ on the SA and $N_{run} = 10$ on the QA

• Actual 0 of the OF $\simeq 10^{-16} \Rightarrow$ Plateau at 10^{-8}

14

- 32×32 matrices with b = 2. $N_{run} = 1000$ on the SA and $N_{run} = 10$ on the QA
- Lower SA's performance in managing large matrices

$n_M \times b$	N _{run}	T[ms]	N _{qubits}
$12(4 \times 3)$	80	$18.5^{+0.9}_{-0.7}$	$24.1^{+0.9}_{-1.1}$
$24(8 \times 3)$	80	$21.7^{+1.3}_{-0.9}$	$81.3^{+2.1}_{-2.3}$
$32(16 \times 2)$	80	$23.0^{+1.4}_{-1.0}$	$140.9^{+1.9}_{-1.9}$
$36(12 \times 3)$	80	$23.0^{+1.4}_{-1.3}$	$177.6^{+6.4}_{-6.6}$
$48(24 \times 2)$	80	$23.0^{+1.0}_{-1.0}$	$306.6^{+11.8}_{-15.6}$
$64(32 \times 2)$	200	$23.6^{+1.2}_{-1.2}$	$529.8^{+30.6}_{-33.8}$

- T is slightly increasing when the matrix dimension $n_M \times b$ increase
- Quadratic growth of N_{qubits} with the total dimension $n_M \times b$

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys. Rev. D 110 (2024) 5, 056012

- Total annealing time T and total number of physical qubits N_{qubits} , averaged on N_{run}

- A hybrid algorithm, suitable for a quantum annealer, was implemented to evaluate the largest real eigenvalue and corresponding eigenvector of a GEVP for the discretization of the hBSE
- Numerical results obtained by running our two-phase algorithm both on Advantage 4.1 and a SA
- The results obtained by the SA established a practical set of input parameters $(b, N_{\Lambda}^{GP}, N_{\Lambda}^{GD})$
- We successfully approached the target eigenpair by running the code on the D-Wave QA, obtaining very encouraging results, up to a matrix with dimension n = 32 and b = 2
- The next challenge is to improve the algorithm in order to address the GEVP without exploiting the non singularity of the symmetric matrix B

