

A.D. 1308 unipg

UNIVERSITÀ DEGLI STUDI DI PERUGIA

Solving the homogenous Bethe-Salpeter equation with a quantum annealer

Filippo Fornetti (Università degli Studi di Perugia, INFN Sezione di Perugia) Alex Gnech (Old Dominion University, Jefferson Laboratory) Tobias Frederico (ITA Brasil) Francesco Pederiva (Università di Trento, INFN-TIFPA) Matteo Rinaldi (INFN Sezione di Perugia) Alessandro Roggero (Università di Trento, INFN-TIFPA) Giovanni Salmè (INFN, Sezione di Roma) Sergio Scopetta (Università degli Studi di Perugia, INFN Sezione di Perugia) Michele Viviani (INFN Sezione di Pisa)

Introduction to the physics problem

Our aim is to apply a variational method, tailored to a Quantum Annealer, for solving the **homogeneous Bethe-Salpeter equation (hBSE)** in Minkowski momentum-space

[E.E Salpeter and H.A. Bethe, Phys. Rev. 84, 1232 (195)]

 $\phi_b(k, p) = G_0^{(12)}(k, p) \left[\frac{d}{\sqrt{2\pi} \lambda^4} i \mathcal{K}(k, k', p) \phi_b(k', p)$, with $p = p_1 + p_2$ and $\binom{1}{0}^{(12)}(k,p)$ ∫ d^4k' $(2π)^4$

We consider the hBSE describing a **bound system** composed by **two massive scalars** interacting through the **exchange of a massive boson**.

 $i\mathcal{K}(k,k',p)\boldsymbol{\phi}_b(k',p)$, with $p=p_1+p_2$ and $k=$ *p*¹ − *p*² 2

The hBSE in this case can be written as a **Non Symmetric Generalized Eigenvalue Problem (GEVP)** adopting a standard discretization method*

In **relativistic quantum-field-theory**, this equation has the same role in the **bound state** description that the **Schrödinger equation** has in non **relativistic quantum mechanics**

***T.Frederico, G.Salmè, and M.Viviani, Phys. Rev. D 89, 016010 (2014)**

hBSE as a Generalized Eigenvalue Problem (GEVP)

[T.Frederico, G.Salmè and M.Viviani, Phys. Rev. D 89, 016010 (2014)]

$$
A \mathbf{v}_i = \lambda_i B \mathbf{v}_i
$$

- The eigenvalues are $\lambda_i = \frac{a_i}{\alpha}$, where $\alpha_i = \frac{b_i}{32\pi^2}$, with g_i the **coupling constant** of the interaction. 1 *αi* $\alpha_i =$
- We are interested **only** in the in the eigenpair corresponding to the **largest, real and** $\textbf{positive}$ eigenvalue λ_n , since $\lambda_n =$ 1 α_n
- α_n is the **minimal coupling constant** that allows the existence of a **bound system** with a given mass $M = 2m - B$ *αn*

energy $\frac{B}{m} = 1.0$ and with an exchanged boson of mass $\frac{\mu}{m} = 0.15$ *m*

$$
\int_{i}^{i} \boldsymbol{B} \, \mathbf{v}_{i}
$$

 g_i^2 *i* $\frac{\partial u}{\partial 2\pi^2}$, with g_i

We are using $(n \times n)$ matrices obtained by the **discretization of the hBSE** with binding $\frac{B}{n}$ *m*

The transverse-Ising Hamiltonian that represents the problem to minimize is **encoded** into the target topology (**PEGASUS**) through an **embedding procedure**, with a heuristic algorithm provided by the D-Wave software

Thanks to the **D-Wave-Cineca** agreement, as part of an international project approved by Q@TN(INFN-UNITN-FBK-CNR), we used the QA **Advantage 4.1** provided by **D-Wave Systems**

To properly translate the problem on the topology of the hardware, the embedding needs to represent the logical qubits of the original problem with a **larger number** of physical qubits

With the **Simulated Annealing (SA)**, the original problem can be directly solved without the an embedding procedure

Formulate a QUBO problem

Goal: Write the **GEVP** as a problem **suitable** by the QA **First step:** write the non symmetric **GEVP** as a **variational problem***

Second step: decompose the B matrix to transform the GEVP into a non symmetric **eigenvalue problem** with the standard **LDL** decomposition

$$
\lambda(\mathbf{v}) = \lambda^R(\mathbf{v}) \pm i\lambda^I(\mathbf{v}) \Rightarrow \mathsf{We want }\lambda^I
$$

$$
f(A, B, \mathbf{v}, \tilde{\lambda}) = \mathbf{v}^T[A - \tilde{\lambda}B]^T[A - \tilde{\lambda}B]
$$

The **objective function (OF)** is minimized by all the eigenvectors **v**:

$$
f(A, B, \mathbf{v}, \tilde{\lambda}) = 0 \Rightarrow \lambda^R(\mathbf{v}) = \mathbf{v}^T \frac{AB^T + B^T A}{2}
$$

$$
CL^{T}\mathbf{v}_{i} = \lambda_{i}L^{T}\mathbf{v}_{i}, \mathbf{w}_{i} = L^{T}\mathbf{v}_{i}
$$

$$
f(C, \mathbf{w}, \tilde{\lambda}) = \mathbf{w}^{T}[C - \tilde{\lambda}I]^{T}[C - \tilde{\lambda}I]\mathbf{w}
$$

We have to exploit the **non singularity** of *B*

***S. Alliney, F. Laudiero and M. Savoia, Applied mathematical modelling 16, 148 (1992)**

-
-
- $\mathbf{v} \geq 0$
-
- 2 **v** $\lambda^{I}(\mathbf{v}) = 0$
-
- I **]w** = **w**^{*T*}*S*($\tilde{\lambda}$) $)w \geq 0$
	-
	-

Formulate a QUBO problem

The **QA** is designed to deal with transverse-Ising model and **QUBO** problems in an hypercube

 $\mathbf{x} = \arg \min_{\mathbf{y}}$ \mathbf{x} ∈ $C_{n,b}$ $\mathbf{x}^TQ\mathbf{x}$

 $\sum_{i=1}^{n} P S(\tilde{\lambda}) P^{T} \mathbf{x} = \mathbf{x}^{T} Q \mathbf{x}$

 $C_{n,b} = [0,1]^{n \cdot b}$. After a **single annealing cycle** the QA returns: *n***b*

We need to approximate our **quadratic form** into a **QUBO** one, rewriting the matrices elements in a **binary basis**

$$
f(C, \mathbf{W}, \tilde{\lambda}) = \mathbf{W}^T S(\tilde{\lambda}) \mathbf{W} \simeq
$$

$$
\mathbf{w} = (w_1, w_2, ..., w_n)^T \in [-1, 1]^n \Rightarrow \mathbf{x} = (q_{1,1}, ..., q_{b,1}, ..., q_{1,n}, ..., q_{b,n})^T \in C_{n,b}
$$

$$
\mathbf{w} \simeq P^T \mathbf{x} \Rightarrow w_{\alpha} = -q_{b,\alpha} + \sum_{i=1}^{b-1} \frac{q_{i,\alpha}}{2^i} \ \ P^T = diag(\mathbf{p}^T, ..., \mathbf{p}^T) \ \mathbf{p} = (-1, \frac{1}{2}, \frac{1}{2}, ..., \frac{1}{2^{b-1}})
$$

Gershgorin Theorem

We can guide the "guess phase" by using the **Gershgorin circle theorem***:

$$
\mathcal{C}_i : |y - c_{ii}| = \leq \sum_{j \neq i} |c_{ij}| = R_G(c_{ii})
$$

If a circle \mathscr{C}_i is disconnected from the others then it contains one ad only one real eigenvalue

If \mathscr{C}_{N} is **disconnected** from the **others**, we can set $\lambda = c_{11} > c_{22} > c_{33}...$ and we select only the solutions $\in \mathscr{C}_N$

* **R. S. Varga, "Gershgorin and his circles", Vol. 36 (Springer Science & Business Media, 2010)**

$$
f(C, \mathbf{w}, \tilde{\lambda}) = \mathbf{w}^T [C - \tilde{\lambda} I]^T [C - \tilde{\lambda} I] \mathbf{w} = \mathbf{w}^T S(\tilde{\lambda})
$$

We **must set** $\lambda \simeq \lambda_n$ if we want to obtain \mathbf{w}_n from a QA cycle $\widetilde{\imath}$ $\simeq \lambda_n$ if we want to obtain \mathbf{w}_n

-
-
- c_{ii} elements of C
-
- $\widetilde{\bm{l}}$ $= c_{11} > c_{22} > c_{33}...$
-

Algorithm I: Guess Phase

$$
= c_{11}), \lambda^R(\mathbf{w}_\alpha), \lambda^I(\mathbf{w}_\alpha)\}
$$

-
-

Among the surviving solutions, we take the one that satisfies:

At the end of the Guess Phase the best eigenpair $(\mathbf{w}_{\alpha_{GP}}, \lambda^R(\mathbf{w}_{\alpha_{GP}}))$ is passed to the))

$$
f_{best}^{GP} = \min_{\mathbf{w}_{\alpha}} f(A, \mathbf{w}_{\alpha}, \tilde{\lambda} = \lambda^{R}(\mathbf{w}_{\alpha}))
$$

$$
f(C, \mathbf{w}, \tilde{\lambda}) = \mathbf{w}^T S(\tilde{\lambda}) \mathbf{w} \simeq \mathbf{x}^T P S(\tilde{\lambda}) P^T \mathbf{x} = \mathbf{x}^T Q \mathbf{x}
$$

We analyze the set $\{w_{\alpha}, f(C, w, \lambda)\}$ $\widetilde{\iota}$

We eliminate the **solutions** outside the disc \mathscr{C}_n

Gradient-Descent phase in order to improve the precision on that solution

After $\alpha = 1,...,N_A^{GP}$ annealing cycles, the QA or the SA returns N_A^{GP} binary vectors $\{{\bf x}_\alpha\}$

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012

• Single run on the SA ($N_A^{GP} = 2000$) for a 32x32 matrix A ^{TGP} = 2000

Algorithm II: gradient-descent

10

New **OF**: *f*(*C*, *δ*(*z*), *λ* ̂ $\widetilde{\bm{l}}$ $\tilde{\partial}$ = $\delta(z)^T \mathcal{Q}(z, \tilde{\lambda})$

At the **end of the GP** of the algorithm we find a solution $\mathbf{w}^{(z=0)} = \mathbf{w}_{\alpha_{GP}}$

Gradient-descent (GD): iterative algorithm that founds a new solution **w**(*z*)

 ∂ (z) $Q(z, \lambda)$ $\widetilde{\bm{l}}$ $\big)_{ij} =$ 1 2 *S*(*λ* $\widetilde{\bm{l}}$)*ij* + *δij* $\left[\mathbf{w}^{(z-1)T}S(\tilde{\lambda})\right]$)]*i*

) $\delta(z) + \delta(z)$ $T\frac{S(\lambda)}{S(\lambda)}$ $\widetilde{\bm{l}}$) 2 *δ*(*z*)

$$
f(C, \mathbf{w}^{(z)}, \tilde{\lambda}) = f(C, \mathbf{w}^{(z-1)}, \tilde{\lambda}) + \left| \mathbf{w}^{(z-1)T} S(\tilde{\lambda}) \right|
$$

$$
\mathbf{w}^{(z)} = \mathbf{w}^{(z-1)} + \frac{1}{z}
$$

The **OF** can be expanded around $\mathbf{w}^{(z-1)}$.

Algorithm II: gradient-descent

11

At **each zoom step** *z* (*z* = 1,…,*zmax*) an **inner loop is opened** *i*

Among the ensemble we select the one with the minimal energy:

$$
\hat{f}_{best;i}^{DP}(z) = \min_{\delta_{\alpha_i}(z)} \hat{f}(C, \mathbf{w}_{\alpha_i}^z, \tilde{\lambda} = \lambda_{best})
$$

If $\lambda^R(\mathbf{w}_{best}^z) \ge \lambda_{best}$ we pass the next zoom step $z + 1$. $\lambda_{best;i}^{z}$) $\geq \lambda_{best}$ we pass the **next zoom step** $z+1$. i

 i_{max}^z : iterations needed to find the best solution for each Z_{max} : iterations needed to find the **best solution for each** Z

- *z max* $= i$ *z*
-

$$
\lambda_{best} = \lambda(\mathbf{w}^{(z-1)}) \text{ and } \mathbf{w}_{best} = \mathbf{w}^{(z-1)}
$$

Total annealing time: *T* ∝ *NGD A zmax* ∑ *i z max*

- $z = 1, 2, \ldots$
- The QA or the SA returns en ensemble of $\alpha_i = 1,...,N_A^{GD}$ qubits states $\{\mathbf{x}_{\alpha_i}\}$
	-

z=1

12

-
- Trade-off between b and z_{max} , already found in the symmetric case * b and z_{max}
- *** B. Krakoff, S. M. Mniszewski and C. F. A. Negre, arXiv:2104.11 (2021)**

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012

• 500 independent samples on the SA ($N_A^{GP} = 200$, $N_A^{GD} = 20$) for a 32x32 matrix

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012

• $z_{max} = 9$

 \cdot Euclidean distance and magnitude of the imaginary part slightly increase with $n_M \times b$

• 4×4 matrices with $b = 3$. $N_{run} = 1000$ on the SA and $N_{run} = 10$ on the QA

• Actual 0 of the OF $\simeq 10^{-16} \Rightarrow$ Plateau at 10^{-8}

14

-
- **Lower SA**'s performance in managing large matrices

 \cdot 32 \times 32 matrices with $b=2$. $N_{run}=1000$ on the SA and $N_{run}=10$ on the QA

-
- T is slightly increasing when the matrix dimension $n_M \times b$ increase
- Quadratic growth of N_{qubits} with the total dimension $n_M \times b$

F.F., A.Gnech, T.Frederico, F.Pederiva, M.Rinaldi, A.Roggero, G.Salmè, S.Scopetta and M.Viviani, Phys.Rev.D 110 (2024) 5, 056012

\bullet Total annealing time T and total number of physical qubits N_{qubits} , averaged on N_{run}

- A hybrid algorithm, suitable for a quantum annealer, was implemented to evaluate the **largest real eigenvalue and corresponding eigenvector** of a **GEVP** for the **discretization of the hBSE**
- Numerical results obtained by running our **two-phase algorithm** both on **Advantage 4.1** and a **SA**
- The results obtained by the **SA** established a **practical set of input parameters** (b, N_A^{GP}, N_A^{GD})
- We successfully approached the target eigenpair by **running the code on the D-Wave QA**, obtaining very encouraging results, up to a matrix with dimension $n=32$ and $b=2$
- **The next challenge** is to **improve the algorithm** in order to address the GEVP without exploiting the **non singularity of the symmetric matrix** *B*