Speaker
Description
Alpha decay has been a probe of nuclear structure and clustering in nuclei since the dawn of nuclear physics. However, microscopic description of alpha-decay rates remains to be a challenge. During the talk, the recent observation of the superallowed alpha-decay chain $^{108}$Xe-$^{104}$Te to doubly magic $^{100}$Sn [1], using the recoil-decay correlation technique with the Argonne Fragment Mass Analyzer at ATLAS, will be presented. This is an important stepping-stone towards developing a microscopic model of alpha decay since it is only the second case of alpha decay to a doubly magic nucleus, besides the benchmark $^{212}$Po alpha decay to $^{208}$Pb. The decay properties of $^{108}$Xe and $^{104}$Te indicate that in at least in one of them the reduced alpha-decay width is a factor of 5 larger than in $^{212}$Po. The enhanced alpha-particle preformation probability could be the result of stronger interactions between protons and neutrons, which occupy the same orbitals in N=Z nuclei. During the talk, the alpha emitters in the $^{100}$Sn region will be compared with their counterparts in the $^{212}$Po region, and with the existing alpha-decay models. Prospects for alpha-decay studies in the $^{100}$Sn region will be also discussed.
[1] K. Auranen, D. Seweryniak et al., Phys. Rev. Lett. 121, 182501 (2018)