

Superallowed alpha decay to doubly-magic ¹⁰⁰Sn

Darek Seweryniak Argonne National Laboratory

PHYSICAL REVIEW LETTERS 121, 182501 (2018)

Editors' Suggestion Featured in Physics

Superallowed α Decay to Doubly Magic ¹⁰⁰Sn

K. Auranen,¹* D. Seweryniak,¹ M. Albers,¹ A. D. Ayangeakaa,^{1,†} S. Bottoni,^{1,‡} M. P. Carpenter,¹ C. J. Chiara,^{1,2,§} P. Copp,^{1,3} H. M. David,^{1,||} D. T. Doherty,^{4,¶} J. Harker,^{1,2} C. R. Hoffman,¹ R. V. F. Janssens,^{5,6} T. L. Khoo,¹ S. A. Kuvin,^{1,7} T. Lauritsen,¹ G. Lotay,⁸ A. M. Rogers,^{1,**} J. Sethi,^{1,2} C. Scholey,⁹ R. Talwar,¹ W. B. Walters,² P. J. Woods,⁴ and S. Zhu¹ ¹Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA ²Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA ³Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA ⁴University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
⁵Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA ⁶Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA ⁸University of Surrey, Guildford GU2 7XH, United Kingdom
⁹Department of Physics, University of Jyvaskyla, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland

Outline

- Alpha decay, past and present
- Theoretical description of alpha decay
- Observation of the ¹⁰⁸Xe-¹⁰⁴Te-¹⁰⁰Sn alpha decay chain
- Discussion of alpha-decay reduced widths
 - ²⁰⁸Pb region vs ¹⁰⁰Sn region
 - theoretical calculations for ¹⁰⁴Te
- Summary and Outlook

Alpha decay - early days

- Becquerel discovers first radioactivity (1896)
- Rutherford characterizes "alpha rays" (1899)
 - Identification of alpha rays as He ions (1907)
- Geiger-Nuttall law (1911)
 - $\log(T_{1/2}) = AQ_{\alpha}^{-1/2} + B$
- Gamow theory of alpha decay (1928)
 - tunneling through a Coulomb/centrifugal barrier
 - probabilistic interpretation of quantum mechanics
- Geiger-Marsden experiment (1909)
 - α scattering on Au foil
 - Rutherford proposes small/heavy atomic nucleus
- First nuclear reactions with α particles as beams
 - α +¹⁴N, discovery of **proton** (1920)
 - α +Be, discovery of **neutron** (1932)

Zur Quantentheorie des Atomkernes.

Von G. Gamow, z. Zt. in Göttingen.

Mit 5 Abbildungen. (Eingegangen am 2. August 1928.)

Es wird der Versuch gemacht, die Prozesse der *a*-Ausstrahlung auf Grund der Wellenmechanik näher zu untersuchen und den experimentell festgestellten Zasammenhang zwischen Zerfallskonstante und Energie der *a*-Partikel theoretisch zu erhalten.

§ 1. Es ist schon öfters* die Vermutung ausgesprochen worden, daß im Atomkern die nichtcoulombschen Anziehungskräfte eine sehr wichtige Rolle spielen. Über die Natur dieser Kräfte können wir viele Hypothesen machen.

Es können die Anziehungen zwischen den magnetischen Momenten der einzelnen Kernbauelemente oder die von elektrischer und magne-

tischer Polarisation herrührenden Kräfte sein.

Jedenfalls nehmen diese Kräfte mit wachsender Entfernung vom Kern sehr schnell ab, und nur in unmittelbarer Nähe des Kernes überwiegen sie den Einfluß der Coulombschen Kräft.

Aus Experimenten über Zerstreuung der α-Strahlen können wir schließen, daß, für schwere Elemente, die An-

ziehungskräfte bis zu einer Entfernung $\sim 10^{-12}\,{\rm cm}$ noch nicht merklich sind. So können wir das auf Fig.1 gezeichnete Bild für den Verlauf der potentiellen Energie annehmen.

Hier bedeutet p'' die Entfernung, bis zu welcher experimentell nachgewiesen ist, daß Coulombache Anziehung allein existiert. Von p' beginnen die Abweichungen (p' ist unbekannt und vielleicht viel kleiner als p'') und bei p_0 had die U-Karve ein Maximum. Für $p < p_0$ herschen schon die Anziehungskräfte vor, in diesem Gebiet würde das Teilchen den Kennrest wie ein Satellit umkreisen.

^{*} J. Frenkel, ZS. f. Phys. 37, 243, 1926; E. Rutherford, Phil. Mag. 4, 580, 1927; D. Enskog, ZS. f. Phys. 45, 852, 1927.

Alpha decay today ²³⁸U - 4.5x10⁹ a ²³²Th – 1.4x10¹⁰ a Exotic proton-rich nuclei Z, number of protons New isotopes 208Ph SHE Super-heavy nuclei Masses Z=82 Structure 116 N=126 114 1 284 FL 285 FL 286 FC F 0 ¹⁰⁰Sp Cn 285 C N=82 Z=28 Z=20 N=50 N=28 N=20 N, number of neutrons There are many formulas for calculating α -decay widths

but microscopic description of α decay remains challenging

Significance of alpha decay

- Clustering in nuclei
 - Emission of heavy clusters
 - fission
- Astrophysics
 - $\alpha + \alpha + \alpha \rightarrow {}^{12}C$ creation in stars, Hoyle state
 - (p, α) reactions
 - (α , n) reactions
- Applications
 - Targeted radiation therapy
 - Thermo-electric engines
 - Smoke detectors
 - He from α decay of U and Th

²⁰Ne EDF calculations, Nature 487, 341 (2012)

Uranium glass

Gamow alpha-decay model

G. Gamow, Z. Phys. 51, 204 (1928)

V(r)
$$\lambda = \nu P$$

 $\Gamma = \hbar \lambda = \hbar \nu P$
Coulomb/centrifugal barrier
E α
 α
 R_1
 R_2
 R_1
 R_2
 λ - decay constant
 Γ - decay width
 ν - assault frequency
 P - penetration probability

$$\lambda = \frac{v}{2R_0} exp\left[-2\int_{R_1}^{R_2} \sqrt{\frac{2\mu}{\hbar} |Q_{\alpha} - V(r)|} dr\right]$$

Can be readily calculated Very steep function of Q-value

 $\Gamma = \delta^2 P$

 $\begin{array}{c} \delta^2 \text{ - } \alpha \text{ preformation factor/} \\ \text{reduced } \alpha \text{ decay width} \end{array}$

R-matrix expression of the alpha-decay width

Decay width:

$$\Gamma_L(R) = 2\gamma_L^2(R)P_L(R)$$

 $P_L(R)$ - penetrability

R – channel radius (outside of the nucleus)

Reduced width amplitude:

$$\gamma_L(R) = \left(\frac{\hbar^2 R}{2\mu}\right)^{1/2} F_L(R)$$

Formation amplitude:

$$F_L(R)$$

= $\int d\xi_{\alpha} d\xi_D d\hat{R} [\phi_{\alpha}(\xi_{\alpha})\psi_D(\xi_D)Y_L(\hat{R})]^*_{\alpha_4,\nu_4}\psi_P(\xi_{\alpha}\xi_D;R)$

Overlap between parent nucleus and daughter nucleus + alpha at a distance R outside of nuclear interactions

Challenges of microscopic α -decay width calculations

- Microscopic description using the shell model
 - Underestimates experimental values by about 2 orders of magnitude
 - Only Shell Model+Cluster Model reproduces ²¹²Po
 - K. Varga et al., PRL 69, 37 (1992)
- Large configuration space
- Antisymmetrization
- Normalization
- Configuration mixing (nucleon-nucleon residual interaction)
 - pairing, proton-neutron interaction
- Contribution from the continuum

 α decay of ²¹²Po to doubly-magic ²⁰⁸Pb is the simplest case and serves as a benchmark for the calculations

Nuclear Structure and Dynamics, May 13-17, 2019

Argonne Fragment Mass Analyzer

Nuclear Structure and Dynamics, May 13-17, 2019

24 ×10

COUNTS / CHANNEL

12

Recoil-Decay Correlations

- Implant-decay spatial and time correlations in DSSD
- Digital DAQ to detect PU waveforms
- Si box to catch escaping alphas

 $^{58}\text{Ni}(^{54}\text{Fe},4n)^{108}\text{Xe}$ reaction $\sim\!\!5$ days , $\sim\!\!30$ pnA FMA set to A=108, charge states Q=+26,+27

Recoil-decay correlations

Expected 0.09 random events

DSSD-Si box coincidences

- Both events where in coincidence with the Si box (only 1 out of 400 events were coincidences)
- The same total energy for both events
- Compared to α emitters different energy split
- Estimated cross section ~200 pb (extrapolated 1-5 nb for ¹⁰⁰Sn)

Observation of weak proton branch in ¹⁰⁸I

8 events followed by ¹⁰⁷Te decay

Q_p=597(13) keV b_p=0.5(3)% T_{1/2}=26.4(8) ms

Sn-Sb-Te cycle at the termination of the rp-process

¹⁰⁸Xe/¹⁰⁴Te α -particle energy determination

- Measured implantation depth and escape angle allow to determine energies of both α particles
- Sum of energies is much better constrained

Alpha-decay Q value systematics

Comparison with mass models

Locally adjusted double-folding potential *P. Mohr, Eur. Phys. J. A* 31, 23 (2007)

Q α (¹⁰⁴Te)=5.42(0.07) MeV, T_{1/2} (¹⁰⁴Te) = 5 ns (assumed P=10%) Q α (¹⁰⁸Xe)=4.65(0.15), T_{1/2} (¹⁰⁸Xe) = 60 µs (assumed P=5%)

DSSD traces for the ¹⁰⁸Xe-¹⁰⁴Te pile-up events

Doubly differentiated traces

¹⁰⁸Xe-¹⁰⁴Te reduced width limits

 $W\alpha(^{104}Te)W\alpha(^{108}Xe)>25$ At least one W_{α} greater than 5

Reduced α -decay widths near ¹⁰⁰Sn

If $W_{\alpha}(^{104}\text{Te})/W_{\alpha}(^{108}\text{Xe}) \sim 2$ as for $^{106}\text{Te}/^{110}\text{Xe}$ pair: $W_{\alpha}(^{104}\text{Te}) > 6$, $W_{\alpha}(^{108}\text{Xe}) > 3$

Reduced α -decay width global systematics

C. Qi et al., Phys. Rev. C 81, 064319 (2010)

Multistep shell model

Monika Patial, R. J. Liotta, and R. Wyss, Phys. Rev. C 93, 054326 (2016)

R-matrix

²¹²**Po** Calculated $T_{1/2}$ =15 µs, experiment 298 ns

¹⁰⁴Te

Calculated $T_{1/2}=1.5 \mu s$, assuming Q α =5.06 MeV, experiment $T_{1/2}<15 ns$ α -particle formation probability **4.85 times larger** in ¹⁰⁴Te compared to ²¹²Po

Complex-energy shell model

R. Id Betan and W. Nazarewicz, Phys. Rev. C 86, 034338 (2012)

R-matrix

²¹²Po

- Calculated T_{1/2} is 36 times too long (R-matrix)
- Too small configuration space

¹⁰⁴Te

- No convergence
- $T_{1/2}$ <500 ns, assuming Q α =5.15 MeV
- Need to add proton-neutron interaction
- Better treatment of continuum

Summary and Outlook

- First observation of ¹⁰⁸Xe-¹⁰⁴Te-¹⁰⁰Sn chain
 - Enhanced alpha preformation
- Theoretical description of α decay still work in progress
 - ¹⁰⁴Te, ¹⁰⁸Xe important for the role of neutron-proton interaction
- Future measurements (more beam, larger efficiency)
 - ¹⁰⁴Te lifetime (~1 ns)
 - more precise α -decay widths for ^{108}Xe and other N~Z α emitters
 - $\,^{\rm 112}\text{Ba}\,\text{N=Z}\,\alpha$ emitter
 - alpha emitters "north-east" ¹⁰⁰Sn can be studied at the new generation fragmentation facilities