Superallowed alpha decay to doubly-magic ^{100}Sn

Darek Seweryniak
Argonne National Laboratory
Superallowed α Decay to Doubly Magic 100Sn

K. Auranen,1,* D. Seweryniak,1 M. Albers,1 A. D. Ayangeakaa,1,† S. Bottoni,1,‡ M. P. Carpenter,1 C. J. Chiara,1,2,§ P. Copp,1,3 H. M. David,$^{1,||}$ D. T. Doherty,4,§ J. Harker,1,2 C. R. Hoffman,1 R. V. F. Janssens,5,6 T. L. Khoo,1 S. A. Kuvin,1,7 T. Lauritsen,1 G. Lotay,8 A. M. Rogers,1,** J. Sethi,1,2 C. Scholey,9 R. Talwar,1 W. B. Walters,2 P. J. Woods,4 and S. Zhu1

1Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA
2Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
3Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
4University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
5Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
6Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708, USA
7Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
8University of Surrey, Guildford GU2 7XH, United Kingdom
9Department of Physics, University of Jyvaskyla, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland
Outline

- Alpha decay, past and present
- Theoretical description of alpha decay
- Observation of the $^{108}\text{Xe}-^{104}\text{Te}-^{100}\text{Sn}$ alpha decay chain
- Discussion of alpha-decay reduced widths
 - ^{208}Pb region vs ^{100}Sn region
 - theoretical calculations for ^{104}Te
- Summary and Outlook
Alpha decay - early days

- **Becquerel** discovers first radioactivity (1896)
- **Rutherford** characterizes “alpha rays” (1899)
 - Identification of alpha rays as He ions (1907)
- **Geiger-Nuttall** law (1911)
 - \(\log(T_{1/2}) = AQ_{\alpha}^{-1/2} + B \)
- **Gamow** theory of alpha decay (1928)
 - tunneling through a Coulomb/centrifugal barrier
 - probabilistic interpretation of quantum mechanics
- **Geiger-Marsden** experiment (1909)
 - \(\alpha \) scattering on Au foil
 - Rutherford proposes small/heavy atomic nucleus
- First nuclear reactions with \(\alpha \) particles as beams
 - \(\alpha + ^{14}\text{N}, \) discovery of **proton** (1920)
 - \(\alpha + \text{Be}, \) discovery of **neutron** (1932)
Alpha decay today

Exotic proton-rich nuclei
New isotopes
Super-heavy nuclei
Masses
Structure

There are many formulas for calculating α-decay widths but **microscopic description** of α decay remains challenging

$^{238}\text{U} - 4.5 \times 10^9 \text{ a}$
$^{232}\text{Th} - 1.4 \times 10^{10} \text{ a}$
Significance of alpha decay

- Clustering in nuclei
 - Emission of heavy clusters
 - Fission
- Astrophysics
 - $\alpha + \alpha + \alpha \rightarrow ^{12}\text{C}$ creation in stars, Hoyle state
 - (p, α) reactions
 - (α, n) reactions
- Applications
 - Targeted radiation therapy
 - Thermo-electric engines
 - Smoke detectors
 - He from α decay of U and Th

$^{20}\text{Ne EDF calculations, Nature 487, 341 (2012)}$
Gamow alpha-decay model

G. Gamow, Z. Phys. 51, 204 (1928)

\[\lambda = \nu P \]
\[\Gamma = \hbar \lambda = \hbar \nu P \]

\[\lambda = \frac{\nu}{2R_0} \exp \left[-2 \int_{R_1}^{R_2} \frac{2\mu}{\hbar} |Q_\alpha - V(r)| \, dr \right] \]

Can be readily calculated
Very steep function of Q-value

\[\Gamma = \delta^2 P \]
\[\delta^2 = \frac{\Gamma_{\text{exp}}}{P_{\text{calc}}} \]

\(\delta^2 \) - \(\alpha \) preformation factor/ reduced \(\alpha \) decay width

\(\lambda \) - decay constant
\(\Gamma \) – decay width
\(\nu \) - assault frequency
\(P \) – penetration probability

Nuclear potential
Coulomb/centrifugal barrier

Nuclear Structure and Dynamics, May 13-17, 2019
R-matrix expression of the alpha-decay width

Decay width:

$$\Gamma_L(R) = 2\gamma_L^2(R) P_L(R)$$

- $P_L(R)$ - penetrability
- R - channel radius (outside of the nucleus)

Reduced width amplitude:

$$\gamma_L(R) = \left(\frac{\hbar^2 R}{2\mu}\right)^{1/2} F_L(R)$$

Formation amplitude:

$$F_L(R) = \int d\xi_\alpha d\xi_D d\hat{R} [\phi_\alpha(\xi_\alpha) \psi_D(\xi_D) Y_L(\hat{R})]^{*}_{\alpha_4,\nu_4} \psi_P(\xi_\alpha \xi_D; R)$$

Overlap between parent nucleus and daughter nucleus + alpha at a distance R outside of nuclear interactions
Challenges of microscopic α-decay width calculations

- Microscopic description using the shell model
 - Underestimates experimental values by about 2 orders of magnitude
 - Only Shell Model+Cluster Model reproduces ^{212}Po

 K. Varga et al., PRL 69, 37 (1992)

- Large configuration space
- Antisymmetrization
- Normalization
- Configuration mixing (nucleon-nucleon residual interaction)
 - pairing, proton-neutron interaction
- Contribution from the continuum

α decay of ^{212}Po to doubly-magic ^{208}Pb is the simplest case and serves as a benchmark for the calculations
\(^{100}\text{Sn} \) physics

\(^{104}\text{Te} \) α decays to doubly magic \(^{100}\text{Sn} \), protons and neutrons occupy the same orbitals.

Self-conjugate
\(n-p \) \(T=0 \) pairing
Isospin non-conservation

\(^{100}\text{Sn} \) physics

Doubly-magic
Shell model

\(\beta \)-decay

Isomers
Seniority spin-gap

\(\alpha \)-decay

rp process end point

p, 2p decay

Super-allowed
\(\beta \)-decay

Super-allowed
GT \(\beta \)-decay

\(^{100}\text{Sn} \) rp process end point

\(^{100}\text{Sn} \) physics

Nuclear Structure and Dynamics, May 13-17, 2019
100Sn region experimental status

α and p decay island NE of 100Sn
Estimated 104Te lifetime 1-10 ns
108Xe-104Te chain instead

105Te lifetime 1-10 ns
108Xe chain instead

α decay
proton decay
β-delayed protons with sizeable branch
Observed/expected

Nuclear Structure and Dynamics, May 13-17, 2019
Argonne Fragment Mass Analyzer

Nuclear Structure and Dynamics, May 13-17, 2019
Recoil-Decay Correlations

- Implant-decay spatial and time correlations in DSSD
- Digital DAQ to detect PU waveforms
- Si box to catch escaping alphas

$^{58}\text{Ni}(^{54}\text{Fe},4n)^{108}\text{Xe}$ reaction
~5 days, ~30 pnA
FMA set to $A=108$, charge states $Q=+26,+27$
Recoil-decay correlations

TWO fast high energy decay events
Expected 0.09 random events
Both events were in coincidence with the Si box (only 1 out of 400 events were coincidences)
• The same total energy for both events
• Compared to α emitters different energy split
• Estimated cross section $\sim 200 \text{ pb}$ (extrapolated 1-5 nb for ^{100}Sn)
Observation of weak proton branch in 108I

8 events followed by 107Te decay

$Q_p=597(13)$ keV

$b_p=0.5(3)$%

$T_{1/2}=26.4(8)$ ms

Sn-Sb-Te cycle at the termination of the rp-process
$^{108}\text{Xe}/^{104}\text{Te} \, \alpha$-particle energy determination

- Measured implantation depth and escape angle allow to determine energies of both α particles.
- Sum of energies is much better constrained.

$E_{\alpha}(^{104}\text{Te}) = 4.9(2)$ MeV
$E_{\alpha}(^{108}\text{Xe}) = 4.4(2)$ MeV
$\sum E_{\alpha} = 9.3(1)$ MeV
Alpha-decay Q value systematics

\[Q_\alpha(^{104}\text{Te}) = 5.1(2) \text{ MeV} \]

\[Q_\alpha(^{108}\text{Xe}) = 4.6(2) \text{ MeV} \]
Comparison with mass models

Locally adjusted double-folding potential

\[Q_\alpha(^{104}\text{Te}) = 5.42(0.07) \text{ MeV}, \ T_{1/2}^{^{104}\text{Te}} = 5 \text{ ns (assumed P=10%)} \]
\[Q_\alpha(^{108}\text{Xe}) = 4.65(0.15), \ T_{1/2}^{^{108}\text{Xe}} = 60 \mu\text{s (assumed P=5%)} \]
DSSD traces for the $^{108}\text{Xe}-^{104}\text{Te}$ pile-up events

Doubly differentiated traces

NO noticeable delay
TWO decays faster than 20 ns each imply $T_{1/2} < 18 \text{ ns}$
$^{108}\text{Xe}-^{104}\text{Te}$ reduced width limits

$W_{\alpha} = \frac{\delta^2}{\delta^2(^{212}\text{Po})}$

$E_{\alpha} = 4.5/4.8 \text{ MeV}$

$T_{1/2}(^{108}\text{Xe}) = 164 \mu s$

$T_{1/2}(^{108}\text{Xe}) = 58 \mu s$

$T_{1/2}(^{108}\text{Xe}) = 35 \mu s$

$W_{\alpha}(^{104}\text{Te})W_{\alpha}(^{108}\text{Xe}) > 25$

At least one W_{α} greater than 5
Reduced α-decay widths near ^{100}Sn

If $W_\alpha(^{104}\text{Te})/W_\alpha(^{108}\text{Xe}) \sim 2$ as for $^{106}\text{Te}/^{110}\text{Xe}$ pair: $W_\alpha(^{104}\text{Te}) > 6$, $W_\alpha(^{108}\text{Xe}) > 3$
Reduced α-decay width global systematics

104Te, $W_{\alpha}>5$

$\rho' \sim 50$

$\log_{10}|R F(R)|^2 > -1.3$

$\rho' = \sqrt{A_{\alpha}A Z_{\alpha}Z_{\alpha}(A_{\alpha}^{3/2} + A_{Z}^{3/2})}$

Multistep shell model

Monika Patial, R. J. Liotta, and R. Wyss, Phys. Rev. C 93, 054326 (2016)

R-matrix

212Po
Calculated $T_{1/2}=15 \mu s$, experiment 298 ns

104Te
Calculated $T_{1/2}=1.5 \mu s$, assuming $Q_\alpha=5.06$ MeV, experiment $T_{1/2}<15$ ns
α-particle formation probability **4.85 times larger** in 104Te compared to 212Po
Complex-energy shell model

R-matrix

^{212}Po
- Calculated $T_{1/2}$ is 36 times too long (R-matrix)
- Too small configuration space

^{104}Te
- No convergence
- $T_{1/2} < 500$ ns, assuming $Q_{\alpha}=5.15$ MeV
- Need to add proton-neutron interaction
- Better treatment of continuum
Summary and Outlook

- First observation of $^{108}\text{Xe}-^{104}\text{Te}-^{100}\text{Sn}$ chain
 - Enhanced alpha preformation
- Theoretical description of α decay still work in progress
 - ^{104}Te, ^{108}Xe important for the role of neutron-proton interaction
- Future measurements (more beam, larger efficiency)
 - ^{104}Te lifetime (~1 ns)
 - more precise α-decay widths for ^{108}Xe and other N~Z α emitters
 - ^{112}Ba N=Z α emitter
 - alpha emitters “north-east” ^{100}Sn can be studied at the new generation fragmentation facilities