June 29, 2015 to July 3, 2015
Pisa
Europe/Rome timezone

Antinucleon-nucleon interaction and the related hadron physics

Jun 30, 2015, 5:30 PM
15m
Room PS1 (Building E, Polo Fibonacci, Pisa)

Room PS1

Building E, Polo Fibonacci, Pisa

Talk Few-Body Physics Working Group Parallel Session 4 - Few-Body Physics WG

Speaker

Xian-Wei Kang (IAS and IKP, Forschungszentrum Jülich)

Description

The recent development of the antinucleon-nucleon (N-bar N) interaction in chiral effective field theory [1] will be reported and the phenomenological meson-exchange models (taking Julich model as an example) will be mentioned as well. With such potentials and the distorted-wave Born approximation, we examine the influence of the antiproton-proton (p-bar p) interaction on the mass spectrum in various reactions containing the antip p pair, e.g., J/ψ → γ¯pp, ω¯pp, π0¯pp and e+e−↔ p-bar p. It turns out that the low-energy mass spectra up to excess energy of 100 MeV for all the mentioned processes can be described by our treatment of the final or initial state (p-bar p) interactions. In J/ψ → γ p-bar p the quite prominent peak near p-bar p threshold is observed in BES experiment, and to describe it, a bound state in isospin-1 1S0 is needed in our calculation [2]. The electromagnetic form factors of the proton in the time-like region are also predicted [3]. The role of N-bar N intermediate states played in the ractions e+e−→ multi-pions will be also discussed, which concerns for the dip structure observed around N-bar N threshold in the experiments. References 1. X.-W. Kang, J. Haidenbauer and U. G. Meißner, JHEP 1402, 113 (2014). 2. X.-W. Kang, J. Haidenbauer and U. G. Meißner, arXiv:1502.00880 [nucl-th]. 3. J. Haidenbauer, X.-W. Kang and U.-G. Meißner, Nucl. Phys. A 929, 102 (2014).

Primary author

Xian-Wei Kang (IAS and IKP, Forschungszentrum Jülich)

Co-authors

Dr Johann Haidenbauer (IAS and IKP, Forschungszentrum Jülich) Prof. Ulf-G. Meißner (HISKP and BCTP, Universität Bonn; IAS and IKP, Forschungszentrum Jülich)

Presentation materials