Sep 10 – 12, 2014
University of Pisa
Europe/Rome timezone

Accelerated neutrino oscillation probability calculations and reweighting on GPUs

Sep 11, 2014, 3:30 PM
30m
University of Pisa

University of Pisa

<a target="_blank" href=https://www.google.com/maps/place/Dipartimento+di+Fisica/@43.720239,10.407985,17z/data=!3m1!4b1!4m2!3m1!1s0x12d591bb7d8c8ec9:0xbf91ddd442e32978>Polo Fibonacci</a> Largo Bruno Pontecorvo, 3 I-56127 Pisa <em>phone +39 050 2214 327</em>

Speaker

Mr Richard Calland (University of liverpool)

Description

Neutrino oscillation experiments are reaching high levels of precision in measurements, which are critical for the search for CP violation in the neutrino sector. Inclusion of matter effects increases the computational burden of oscillation probability calculations. The independency of reweighting individual events in a Monte Carlo sample lends itself to parallel implementation on a Graphics Processing Unit. The library Prob3++ was ported to the GPU using the CUDA C API, allowing for large scale parallelized calculations of neutrino oscillation probabilities through matter of constant density, decreasing the execution time by 2 orders of magnitude, when compared to performance on a single CPU. Additionally, benefit can be realized by porting some systematic uncertainty calculations to GPU, especially non-linear uncertainties evaluated on splines. The implementation of a fast, parallel spline evaluation on a GPU is discussed.

Primary author

Mr Richard Calland (University of liverpool)

Presentation materials