
Accelerated Neutrino Oscillation Probability
Calculations and Reweighting on GPUs

Richard Calland
University of Liverpool

GPU Computing in High Energy Physics
University of Pisa, 11th September 2014

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 2

Introduction
● Neutrino Oscillations
● The T2K Experiment
● Oscillation Analysis Strategy

– Benefits from GPUs

● Conclusions

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 3

Neutrinos
● Neutrinos are the lightest of all known particles
● Thought to be massless, until neutrino oscillations were

discovered as a solution to the solar neutrino problem

– Neutrinos are a mix of mass (ν
1
,ν

2
,ν

3
) and flavour (ν

e
,ν

μ
,ν

τ
)

eigenstates

– Neutrino created as one flavour has a non-zero probability of
being observed later as a different flavour

– Mass and flavour states related via the PMNS mixing matrix
(analogous to CKM matrix in quarks)

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 4

Oscillation Model

L = distance travelled by neutrino
E = energy of neutrino

AtmosphericAtmospheric AcceleratorAccelerator ReactorReactor SolarSolar

Probability of neutrino ν
α

oscillating to type ν
β

We want to measure these!

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 5

Neutrino Oscillations in Matter

● The interactions with ambient electrons in matter cause the
neutrinos to feel an extra potential

● These so-called “matter effects” must be modelled
● Addition of an extra potential term to calculations creates a

different oscillation probability compared to vacuum

● Need to re-diagonalize the matrix to find the neutrino mass
eigenstates in matter

2 neutrino approximation Matter fx

Vacuum

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 6

Time evolution of the state

Arbitrary state vector in flavour space Initial state transition amplitude

Barger et al. Phys. Rev. D22(1980) 2718

Has 3 independent solutions for
row vector ψj, assemble into
matrix X

Probability = |A|2

Analytical Solution

Solutions are the roots of the arc-cos

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 7

● Study intense beam of
accelerator-produced muon
neutrinos

● Near detector characterises
beam

● Far detector observes
oscillation effect at a distance
of 295 km from source

The T2K Experiment

Matter density of ~ 2.6 gcm-3

“Tokai-to-Kamioka”

50 kt ultra pure water

11,000 PMTs

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 8

Detector Events
Super-Kamiokande Far DetectorSuper-Kamiokande Far Detector

ND280 Near DetectorND280 Near Detector

Cherenkov detector

Plastic Scintillator + Gar TPC detector

ν beam

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 9

Understanding the beam
● Beam is simulated from accelerator

to the neutrino target, and finally the
interactions inside the detectors

● Events measured in the near
detector help tune the flux
prediction

● We know what event rates to expect
at the far detector for a null
oscillation hypothesis

Proton
beam

Neutrino
beam

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 10

Analysis Strategy
● T2K looks for a deficit of ν

μ
 and an appearance of ν

e

neutrinos at the far detector
● Constrain beam flux and cross section systematics

using the near detector
● Construct a binned likelihood using detector PDFs

made from Monte Carlo
● Use a Markov Chain Monte Carlo to sample the

high-dimensional posterior probability

This is where we can benefit from GPUs; the focus of
this talk!

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 11

Constructing a PDF
● To calculate a binned likelihood from Monte Carlo, there

are generally two methods:
– Fill a histogram with MC, reweight each bin according to your

model

– Reweight each MC event according to your model, fill a
histogram

● Reweighting is a common method to model the response
of the PDF to changes in your model

● The point is that you can either create histograms
(“templates”), and throw away your MC, or

● Keep all your MC in memory, and make a histogram at
every iteration of your fitting algorithm

● Obviously, the second method is far more computationally
demanding...

Template method

Event-by-event method

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 12

Why Event-by-event?
● There are several advantages to using the

event-by-event method:
– Retain more shape information within the bin when

reweighting

0.6 0.7

0.65

Reweighting
function

Applied weight

Data point

Template method would use 0.65 Template method would use 0.65
to reweight entire binto reweight entire bin

Event-by-event method uses Event-by-event method uses
actual MC event value to actual MC event value to
reweight: more precisionreweight: more precision

Histogram bin

1-2% difference for MC
events in T2K

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 13

Why Event-by-event?
● Better treatment of systematic uncertainties

– Model event migration between samples (e.g.
PID / reconstruction efficiency parameters)

– Model event migration between bins (e.g. energy
scale)

● Cannot easily treat migrations using templates

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 14

Feasibility on CPU
● In T2K, have ~1M MC events for far detector, and

~500,000 for near detector
● This means moving from ~100 calculations per fit

iteration (i.e.100 bins) to ~ 1 million calculations
per iteration of the sampler
– Each fit itself requires many millions interations

● Computationally prohibitive: Can GPUs help?
● Offload two most CPU intensive reweighting tasks:

– Calculation of oscillation probability

– Calculation of response functions for cross section
modelling

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 15

Oscillation Probability
● Need to model neutrino oscillation in our PDF

– We saw earlier there is a cumbersome analytical solution

● Luckily, someone already wrote a library to do this
– http://www.phy.duke.edu/~raw22/public/Prob3++/

– Produces a weight for a given neutrino energy

● Unfortunately, rather slow ~ 2-3 seconds to reweight all
1,000,000 MC entries

● Need to do this ~20 million times for one analysis
– 2,000,000,000,000 calculations needed! (2 x 1012)

– ~2 years on a single machine with no GPU!

● Ported some functions to GPU using CUDA 5
– Propagation through constant matter density

– Acceptable for long baseline experiments like T2K

http://www.phy.duke.edu/~raw22/public/Prob3++/

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 16

CUDA Implementation

3x3
Complex

mixing matrix

3x3
Complex

mixing matrix
3x3

mass matrix

3x3
mass matrix

Oscillation probability kernelOscillation probability kernel

Array of MC neutrino energies

Array of probabilities (weights)

Copy to host

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 17

Benchmarks
Intel Xeon “Westmere” CPU E5640 @ 2.67GHz
NVIDIA “Fermi” M2070 GPU - 448 CUDA cores

● Standalone benchmark: measure execution time as a function of number of oscillation
calculations in double precision

● For ~100,000-1M concurrent calculations, CUDA approaches 2 orders of magnitude speed-up
● Multi-core implementation using OpenMP (limited to 4 physical cores) is also compared

Region for event-by-event method

Template
method
regionThreads

occupied

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 18

Xeon Phi Comparison

Intel Xeon “Ivybridge” CPU E5-2680v2 @ 2.80GHz
Xeon Phi 7120P co-processor

Dual socket machine, 40 logical cores with
hyperthreading.

Not a perfect comparison
due to turbo boost

Competitive with
M2070 GPU

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 19

Validation

• 10 million random comparisons between CPU and GPU calculations
• Agreement to 10-12 precision, more than good enough for this application
• Difference attributed to extended ALU of CPU and different hardware

implementations of non-associative calculations

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 20

Repsonse Functions
● Next biggest bottleneck is the modelling of cross section response

– Cross section model parameters have non-linear response

● We use cubic splines to encode how the PDF responds to changes in
cross section parameters

– Rerunning the MC generator for each sample is no possible

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 21

Reformatting
● Our splines are formatted as TSpline3 cubic

spline objects
– http://root.cern.ch

● Lots of bloat: ~4M instantiations of a C++ class
● Try to reformat to perform better on GPU

– A more sensible data access pattern

● Instead of a class, format as an array and use a
kernel function to evaluate:
– Locate polynominal inside spline

– Evaluate the polynominal at x

– Save the response of spline as a weight

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 22

Convert TSpline3 Into an array

● Convert TSpline3 objects into a monolithic array

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 23

GPU Implementation
● This monolithic array is now smaller in memory and slightly

faster on CPU
● Copy large (~1.2 Gb) array onto GPU RAM at initialization,

keep it there (read-only resource)
● Every iteration, evaluate all splines with a CUDA kernel and

push the weight from each spline back onto CPU RAM
● GPU implementation yields ~20 speed-up over TSpline3

version for the evaluation of 4,000,000 splines
– Monolith array is ~3-5x faster on GPU

● Many ways to improve this basic implementation
– Use of shared memory
– Asynchronous data transfer

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 24

Analysis Deployment
● As previously mentioned, analysis uses a Markov

Chain Monte Carlo to sample the high
dimensional space of the model with respect to the
data

● MCMC is very scalable to high numbers of
parameters
– 5 Detector samples demand ~200 parameter fit

● This equates to needing ~ 50 million MCMC
samples

● With each step taking ~5 seconds if executed on
CPU, this means 2800 CPU days

● In GPU mode, this is ~140 GPU days

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 25

Cluster Deployment
● Multiple MCMC runs can be executed and combined

– Each chain produces independent samples

● This lends itself perfectly to distributing the analysis
load across a GPU HPC cluster

● Run multiple chains using the same model and data,
but different starting configuration

All chains converge on the same
stationary distribution

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 26

GPU HPC Cluster

MCMC chain

MCMC chain

MCMC chain

MCMC chain

MCMC chain

MCMC chain

MC samples,
Splines etc

Combine output

Data file

job_script.py

….

Chains are considered
independent samples
and can simply be
added together

We would like to acknoledge the SES (Science Engineering South) Centre
for Innovation service (CFI) Emerald HPC cluster for their support

370 NVIDIA M2090 GPUs

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 27

T2K 2014 Oscillation Results

First hints of CP violation in the
lepton sector

Current world leading
measurement of θ23 Results from the Bayesian analysis presented in this talk.

When combined with reactor measurements (Daya Bay
etc), constraint on δ

cp
 emerges.

Currently writing paper for submission to Phys. Rev. D.

PRELIMINARY

PRELIMINARY

PRELIMINARY

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 28

Conclusions
● What was once an unfeasible reweighting method has been

made possible with the use of GPUs
● Calculation of oscillation probability with matter effects saw 2

orders of magnitude speed-up
● Response function calculations saw ~20 speed-up
● In general, the analysis saw a ~20 speed-up

– Using Emerald cluster, 1 fit takes 0.5 days (compared to ~10 days)

– Move more reweighting (all) functionality to GPU to improve

● Utilized the Emerald HPC facility to run thousands of validation
fits and finally the official result

● “Accelerated Event-by-Event Neutrino Oscillation Reweighting
with Matter Effects on a GPU” - JINST 9 2014
– http://arxiv.org/abs/1311.7579

● http://hep.ph.liv.ac.uk/~rcalland/probGPU/

http://arxiv.org/abs/1311.7579

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 29

Thankyou for your attention!

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 30

Backup Slides

31

Benchmark Code Snippet

 clock.Start();

 for (int i = 0; i < N; ++i)
 {
 bNu>SetMNS(nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], 100.0, true);
 bNu>propagateLinear(2, 295, 2.6);
 sample_weights[i] = bNu>GetProb(2, 2);
 }

 clock.Stop();

 clock.Start();

#pragma omp parallel for num_threads(4)
 for (int i = 0; i < N; ++i)
 {
 bNu>SetMNS(nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], 100.0, true);
 bNu>propagateLinear(2, 295, 2.6);
 sample_weights[i] = bNu>GetProb(2, 2);
 }

 clock.Stop();

 clock.Start();

 setMNS(nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], true);
 GetProb(2, 2, 295, 2.6, energy, N, sample_weights);

 clock.Stop();

CPU

OpenMP

CUDA

32

extern "C" __host__ void GetProb(int Alpha, int Beta, double Path, double Density, double *Energy, int n,
double *oscw)
{
 size_t dmsize = 3*3*sizeof(double);
 typedef double dmArray[3];
 dmArray *d = (dmArray*)malloc(dmsize);
 memcpy(d, &dm, dmsize);
 dmArray *dm_device;
 cudaMalloc((void **) &dm_device, dmsize);
 cudaMemcpy(dm_device, dm, dmsize, cudaMemcpyHostToDevice);

 size_t mixsize = 3*3*2*sizeof(double);
 typedef double mixArray[3][2];
 mixArray *m = (mixArray*)malloc(mixsize);
 memcpy(m, &mix, mixsize);
 mixArray *mix_device;
 cudaMalloc((void **) &mix_device,mixsize);
 cudaMemcpy(mix_device, mix, mixsize, cudaMemcpyHostToDevice);

 size_t size = n * sizeof(double);
 double *energy_device = NULL;

 cudaMalloc((void **) &energy_device, size);
 cudaMemcpy(energy_device, Energy, size, cudaMemcpyHostToDevice);

 double *osc_weights;
 cudaMalloc((void **) &osc_weights, size);

 dim3 block_size;
 block_size.x = 512;

 dim3 grid_size;
 grid_size.x = (n / block_size.x) + 1;

 propagateLinear<<<grid_size, block_size>>>(Alpha, Beta, Path, Density, mix_device, dm_device, energy_device,
osc_weights,n);

 cudaMemcpy(oscw, osc_weights, size, cudaMemcpyDeviceToHost);
 clean_up(); // cudaFree everything
}

Copy mixing matrix and mass
matrix (matter effects) to
device

Copy Monte Carlo event
energies to device

Execute kernel

Copy oscillation weights
back to host

Could copy to
constant / texture
memory

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 33

● To evaluate the posterior distribution, need to integrate over high-dimensions
● MCMC provides an efficient way to perform the ~200-dimensional integral
● MCMC performs a semi-random walk through parameter space, following the path of the
likelihood function

● Can run multiple chains on a cluster and combine output

Markov Chain Monte Carlo

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 34

Method

1

2

3

Throw 200 proposed new
values of parameters

Is new state better than
current?
Accept or reject

Complete cycle ~20
million times

Evaluate likelihood function

performed on GPU

Time per step ~0.3 secondsWrite to disk
~ 20x speed-up

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 35

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 36

Creating detector PDFs

● Use detector Monte Carlo to construct empirical PDFs of expected neutrino
data distributions

● Apply neutrino oscillation model (and systematic model) by reweighting MC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

