

Accelerated Neutrino Oscillation Probability Calculations and Reweighting on GPUs

Richard Calland

University of Liverpool GPU Computing in High Energy Physics University of Pisa, 11th September 2014

Introduction

- Neutrino Oscillations
- The T2K Experiment
- Oscillation Analysis Strategy
 - Benefits from GPUs
- Conclusions

Neutrinos

- Neutrinos are the lightest of all known particles
- Thought to be massless, until neutrino oscillations were discovered as a solution to the solar neutrino problem
 - Neutrinos are a mix of mass (v_1, v_2, v_3) and flavour (v_e, v_μ, v_τ) eigenstates
 - Neutrino created as one flavour has a non-zero probability of being observed later as a different flavour
 - Mass and flavour states related via the PMNS mixing matrix (analogous to CKM matrix in quarks)

Oscillation Model

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}\left(\frac{1}{4}\Delta m_{ij}^{2}\frac{L}{E}\right)$$
Probability of neutrino v_{α}
oscillating to type v_{β}

$$+ 2\sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin\left(\frac{1}{2}\Delta m_{ij}^{2}\frac{L}{E}\right)$$

$$L = \text{distance travelled by neutrino}$$

$$E = \text{energy of neutrino}$$

$$U = \begin{pmatrix} 1 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13} & i\delta \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{ij} = \sin\theta_{ij}$$

$$\frac{Atmospheric}{e^{i\beta}} = Accelerator = Reactor = Solar$$

- The interactions with ambient electrons in matter cause the neutrinos to feel an extra potential
- These so-called "matter effects" must be modelled
- Addition of an extra potential term to calculations creates a different oscillation probability compared to vacuum

$$i\frac{d}{dt}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix} = \begin{pmatrix}-\frac{\Delta m^{2}}{4E}\cos 2\theta + V & \frac{\Delta m^{2}}{4E}\sin 2\theta\\\frac{\Delta m^{2}}{4E}\sin 2\theta & \frac{\Delta m^{2}}{4E}\cos 2\theta\end{pmatrix}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\end{pmatrix}$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

0.6 0.4 0.2 0 2e+09 4e+09 6e+09 8e+09 1e+10 1.2e+10 1.4e+10

Vacuum

 Need to re-diagonalize the matrix to find the neutrino mass eigenstates in matter

Analytical Solution

The T2K Experiment

- Study intense beam of accelerator-produced muon neutrinos
- Near detector characterises beam
- Far detector observes oscillation effect at a distance of 295 km from source

Detector Events

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014

Understanding the beam

- Beam is simulated from accelerator to the neutrino target, and finally the interactions inside the detectors
- Events measured in the near detector help tune the flux
 prediction

B

•

Target

π⁺, K⁺,...

Proton

beam

 We know what event rates to expect at the far detector for a null oscillation hypothesis

Magnetic Horn

 π^+ decav

- T2K looks for a deficit of $v_{_{\!\mu}}$ and an appearance of $v_{_{\!e}}$ neutrinos at the far detector
- Constrain beam flux and cross section systematics using the near detector
- Construct a binned likelihood using detector PDFs made from Monte Carlo
- Use a Markov Chain Monte Carlo to sample the high-dimensional posterior probability

This is where we can benefit from GPUs; the focus of this talk!

Constructing a PDF

- To calculate a binned likelihood from Monte Carlo, there are generally two methods:
 - Fill a histogram with MC, reweight each <u>bin</u> according to your model
 - Reweight each <u>MC event</u> according to your model, fill a histogram
- Reweighting is a common method to model the response of the PDF to changes in your model
- The point is that you can either create histograms ("templates"), and throw away your MC, or
- Keep all your MC in memory, and make a histogram at every iteration of your fitting algorithm
- Obviously, the second method is far more computationally demanding...

Why Event-by-event?

- There are several advantages to using the event-by-event method:
 - Retain more shape information within the bin when reweighting
 Template method would use 0.65

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014

Why Event-by-event?

- Better treatment of systematic uncertainties
 - Model event migration between samples (e.g. PID / reconstruction efficiency parameters)
 - Model event migration between bins (e.g. energy scale)
- <u>Cannot</u> easily treat migrations using templates

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014

Feasibility on CPU

- In T2K, have ~1M MC events for far detector, and ~500,000 for near detector
- This means moving from ~100 calculations per fit iteration (i.e.100 bins) to ~1 million calculations per iteration of the sampler
 - Each fit itself requires many millions interations
- Computationally prohibitive: Can GPUs help?
- Offload two most CPU intensive reweighting tasks:
 - Calculation of oscillation probability
 - Calculation of response functions for cross section modelling

Oscillation Probability

- Need to model neutrino oscillation in our PDF
 - We saw earlier there is a cumbersome analytical solution
- Luckily, someone already wrote a library to do this
 - http://www.phy.duke.edu/~raw22/public/Prob3++/
 - Produces a weight for a given neutrino energy
- Unfortunately, rather slow ~ 2-3 seconds to reweight all 1,000,000 MC entries
- Need to do this ~20 million times for one analysis
 - 2,000,000,000,000 calculations needed! (2 x 10¹²)
 - ~2 years on a single machine with no GPU!
- Ported some functions to GPU using CUDA 5
 - Propagation through constant matter density
 - Acceptable for long baseline experiments like T2K

CUDA Implementation

Array of MC neutrino energies

Array of probabilities (weights)

Benchmarks

- Standalone benchmark: measure execution time as a function of number of oscillation calculations in **double precision**
- For ~100,000-1M concurrent calculations, CUDA approaches **2 orders of magnitude speed-up**
- Multi-core implementation using OpenMP (limited to 4 physical cores) is also compared

Xeon Phi Comparison

Intel Xeon "Ivybridge" CPU E5-2680v2 @ 2.80GHz Xeon Phi 7120P co-processor

Dual socket machine, 40 logical cores with hyperthreading.

Validation

- $\cdot\,$ 10 million random comparisons between CPU and GPU calculations
- · Agreement to 10⁻¹² precision, more than good enough for this application
- Difference attributed to extended ALU of CPU and different hardware implementations of non-associative calculations

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014

Repsonse Functions

- Next biggest bottleneck is the modelling of cross section response
 - Cross section model parameters have non-linear response
- We use cubic splines to encode how the PDF responds to changes in cross section parameters
 - Rerunning the MC generator for each sample is no possible

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014

Reformatting

- Our splines are formatted as TSpline3 cubic spline objects
 - http://root.cern.ch
- Lots of bloat: ~4M instantiations of a C++ class
- Try to reformat to perform better on GPU
 - A more sensible data access pattern
- Instead of a class, format as an array and use a kernel function to evaluate:
 - Locate polynominal inside spline
 - Evaluate the polynominal at ${\bf x}$
 - Save the response of spline as a weight

TZR Convert TSpline3 Into an array

Minimal Eval(x) function:

- 1) sort input x in range of [x1 -- x7], return poly #n
- 2) get params for poly #n
- 3) evaluate polynomial $f(x) = ax^3 + bx^2 + cx + y$

Convert TSpline3 objects into a monolithic array

Spline#1	Spline#2			Spline#999,999		Spline#1,000,000
[N] [X][P][P][P][P][P][P][P]	[N] [X][P][P][P][P][P][P][P]			[N] [X][P][P][P][P][P][P][P]		[N][X][P][P][P][P][P][P][P]
N= # of knots in particular spline		[X] = set of x-params for spline		[P][P]	= Spline i's Polynomials	

GPU Implementation

- This monolithic array is now smaller in memory and slightly faster on CPU
- Copy large (~1.2 Gb) array onto GPU RAM at initialization, keep it there (read-only resource)
- Every iteration, evaluate all splines with a CUDA kernel and push the weight from each spline back onto CPU RAM
- GPU implementation yields ~20 speed-up over TSpline3 version for the evaluation of 4,000,000 splines
 - Monolith array is ~3-5x faster on GPU
- Many ways to improve this basic implementation
 - Use of shared memory
 - Asynchronous data transfer

Analysis Deployment

- As previously mentioned, analysis uses a Markov Chain Monte Carlo to sample the high dimensional space of the model with respect to the data
- MCMC is very scalable to high numbers of parameters
 - 5 Detector samples demand ~200 parameter fit
- This equates to needing ~ 50 million MCMC samples
- With each step taking ~5 seconds if executed on CPU, this means 2800 CPU days
- In GPU mode, this is ~140 GPU days

Cluster Deployment

- Multiple MCMC runs can be executed and combined
 - Each chain produces independent samples
- This lends itself perfectly to distributing the analysis load across a GPU HPC cluster
- Run multiple chains using the same model and data, but different starting configuration

GPU HPC Cluster

T2K 2014 Oscillation Results

lepton sector

Results from the Bayesian analysis presented in this talk. When combined with reactor measurements (Daya Bay etc), constraint on δ_{cn} emerges.

Currently writing paper for submission to Phys. Rev. D.

Conclusions

- What was once an unfeasible reweighting method has been made possible with the use of GPUs
- Calculation of oscillation probability with matter effects saw 2 orders of magnitude speed-up
- Response function calculations saw ~20 speed-up
- In general, the analysis saw a ~20 speed-up
 - Using Emerald cluster, 1 fit takes **0.5** days (compared to **~10** days)
 - Move more reweighting (all) functionality to GPU to improve
- Utilized the Emerald HPC facility to run thousands of validation fits and finally the official result
- "Accelerated Event-by-Event Neutrino Oscillation Reweighting with Matter Effects on a GPU" - JINST 9 2014
 - http://arxiv.org/abs/1311.7579
- http://hep.ph.liv.ac.uk/~rcalland/probGPU/

Thankyou for your attention!

Backup Slides


```
clock.Start();
                                                         CPU
  for (int i = 0; i < N; ++i)
    {
      bNu->SetMNS( nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], 100.0, true );
      bNu->propagateLinear( 2, 295, 2.6 );
      sample weights[i] = bNu->GetProb(2, 2);
    }
  clock.Stop();
 clock.Start();
                                                         OpenMP
#pragma omp parallel for num threads(4)
 for (int i = 0; i < N; ++i)
   {
     bNu->SetMNS( nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], 100.0, true );
     bNu->propagateLinear( 2, 295, 2.6 );
     sample weights[i] = bNu->GetProb(2, 2);
   }
 clock.Stop();
                                                         CUDA
 clock.Start();
 setMNS(nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], true);
 GetProb(2, 2, 295, 2.6, energy, N, sample weights);
 clock.Stop();
```

extern "C" host void GetProb(int Alpha, int Beta, double Path, double Density, double *Energy, int n,

Markov Chain Monte Carlo

- To evaluate the posterior distribution, need to integrate over high-dimensions
- MCMC provides an efficient way to perform the ~200-dimensional integral
- MCMC performs a semi-random walk through parameter space, following the path of the likelihood function
- Can run multiple chains on a cluster and combine output

Method

Creating detector PDFs

- Use detector Monte Carlo to construct empirical PDFs of expected neutrino data distributions
- Apply neutrino oscillation model (and systematic model) by reweighting MC

