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Introduction
● Neutrino Oscillations
● The T2K Experiment
● Oscillation Analysis Strategy

– Benefits from GPUs

● Conclusions
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Neutrinos
● Neutrinos are the lightest of all known particles
● Thought to be massless, until neutrino oscillations were 

discovered as a solution to the solar neutrino problem

– Neutrinos are a mix of mass (ν
1
,ν

2
,ν

3
) and flavour (ν

e
,ν

μ
,ν

τ
) 

eigenstates

– Neutrino created as one flavour has a non-zero probability of 
being observed later as a different flavour

– Mass and flavour states related via the PMNS mixing matrix 
(analogous to CKM matrix in quarks) 
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Oscillation Model

L = distance travelled by neutrino
E = energy of neutrino

AtmosphericAtmospheric AcceleratorAccelerator ReactorReactor SolarSolar

Probability of neutrino ν
α
 

oscillating to type  ν
β

We want to measure these!
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Neutrino Oscillations in Matter

● The interactions with ambient electrons in matter cause the 
neutrinos to feel an extra potential

● These so-called “matter effects” must be modelled
● Addition of an extra potential term to calculations creates a 

different oscillation probability compared to vacuum

● Need to re-diagonalize the matrix to find the neutrino mass 
eigenstates in matter

2 neutrino approximation Matter fx

Vacuum
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Time evolution of the state

Arbitrary state vector in flavour space Initial state transition amplitude

Barger et al. Phys. Rev. D22(1980) 2718

Has 3 independent solutions for 
row vector ψj, assemble into 
matrix X

Probability = |A|2

Analytical Solution

Solutions are the roots of the arc-cos
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● Study intense beam of 
accelerator-produced muon 
neutrinos

● Near detector characterises 
beam

● Far detector observes 
oscillation effect at a distance 
of 295 km from source

The T2K Experiment

Matter density of ~ 2.6 gcm-3

“Tokai-to-Kamioka”

50 kt ultra pure water

11,000 PMTs



 

GPU Computing in High Energy Physics, University of Pisa, 11th September 2014 8

Detector Events
Super-Kamiokande Far DetectorSuper-Kamiokande Far Detector

ND280 Near DetectorND280 Near Detector

Cherenkov detector

Plastic Scintillator + Gar TPC detector

ν beam
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Understanding the beam
● Beam is simulated from accelerator 

to the neutrino target, and finally the 
interactions inside the detectors

● Events measured in the near 
detector help tune the flux 
prediction

● We know what event rates to expect 
at the far detector for a null 
oscillation hypothesis

Proton 
beam

Neutrino 
beam
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Analysis Strategy
● T2K looks for a deficit of ν

μ
 and an appearance of ν

e
 

neutrinos at the far detector
● Constrain beam flux and cross section systematics 

using the near detector
● Construct a binned likelihood using detector PDFs 

made from Monte Carlo
● Use a Markov Chain Monte Carlo to sample the 

high-dimensional posterior probability

This is where we can benefit from GPUs; the focus of 
this talk!
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Constructing a PDF
● To calculate a binned likelihood from Monte Carlo, there 

are generally two methods:
– Fill a histogram with MC, reweight each bin according to your 

model

– Reweight each MC event according to your model, fill a 
histogram 

● Reweighting is a common method to model the response 
of the PDF to changes in your model

● The point is that you can either create histograms 
(“templates”), and throw away your MC, or

● Keep all your MC in memory, and make a histogram at 
every iteration of your fitting algorithm

● Obviously, the second method is far more computationally 
demanding...

Template method

Event-by-event method
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Why Event-by-event?
● There are several advantages to using the 

event-by-event method:
– Retain more shape information within the bin when 

reweighting

0.6 0.7

0.65

Reweighting 
function

Applied weight

Data point

Template method would use 0.65 Template method would use 0.65 
to reweight entire binto reweight entire bin

Event-by-event method uses Event-by-event method uses 
actual MC event value to actual MC event value to 
reweight: more precisionreweight: more precision

Histogram bin

1-2% difference for MC 
events in T2K
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Why Event-by-event?
● Better treatment of systematic uncertainties

– Model event migration between samples (e.g. 
PID / reconstruction efficiency parameters)

– Model event migration between bins (e.g. energy 
scale)

● Cannot easily treat migrations using templates
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Feasibility on CPU
● In T2K, have ~1M MC events for far detector, and 

~500,000 for near detector
● This means moving from ~100 calculations per fit 

iteration (i.e.100 bins) to ~ 1 million calculations 
per iteration of the sampler
– Each fit itself requires many millions interations

● Computationally prohibitive: Can GPUs help?
● Offload two most CPU intensive reweighting tasks:

– Calculation of oscillation probability

– Calculation of response functions for cross section 
modelling
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Oscillation Probability
● Need to model neutrino oscillation in our PDF

– We saw earlier there is a cumbersome analytical solution

● Luckily, someone already wrote a library to do this
– http://www.phy.duke.edu/~raw22/public/Prob3++/

– Produces a weight for a given neutrino energy

● Unfortunately, rather slow ~ 2-3 seconds to reweight all 
1,000,000 MC entries

● Need to do this ~20 million times for one analysis
– 2,000,000,000,000 calculations needed! (2 x 1012)

– ~2 years on a single machine with no GPU!

● Ported some functions to GPU using CUDA 5 
– Propagation through constant matter density

– Acceptable for long baseline experiments like T2K

http://www.phy.duke.edu/~raw22/public/Prob3++/
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CUDA Implementation

3x3 
Complex

mixing matrix

3x3 
Complex

mixing matrix
3x3 

mass matrix

3x3 
mass matrix

Oscillation probability kernelOscillation probability kernel

Array of MC neutrino energies

Array of probabilities (weights)

Copy to host
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Benchmarks
Intel Xeon “Westmere” CPU E5640  @ 2.67GHz
NVIDIA “Fermi” M2070 GPU - 448 CUDA cores

● Standalone benchmark: measure execution time as a function of number of oscillation 
calculations in double precision

● For ~100,000-1M concurrent calculations, CUDA approaches 2 orders of magnitude speed-up
● Multi-core implementation using OpenMP (limited to 4 physical cores) is also compared

Region for event-by-event method

Template 
method 
regionThreads 

occupied
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Xeon Phi Comparison

Intel Xeon “Ivybridge” CPU E5-2680v2 @ 2.80GHz
Xeon Phi 7120P co-processor

Dual socket machine, 40 logical cores with 
hyperthreading.

Not a perfect comparison 
due to turbo boost

Competitive with 
M2070 GPU
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Validation

• 10 million random comparisons between CPU and GPU calculations
• Agreement to 10-12 precision, more than good enough for this application
• Difference attributed to extended ALU of CPU and different hardware 

implementations of non-associative calculations
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Repsonse Functions
● Next biggest bottleneck is the modelling of cross section response

– Cross section model parameters have non-linear response

● We use cubic splines to encode how the PDF responds to changes in 
cross section parameters

– Rerunning the MC generator for each sample is no possible
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Reformatting
● Our splines are formatted as TSpline3 cubic 

spline objects
– http://root.cern.ch

● Lots of bloat: ~4M instantiations of a C++ class
● Try to reformat to perform better on GPU

– A more sensible data access pattern

● Instead of a class, format as an array and use a 
kernel function to evaluate:
– Locate polynominal inside spline

– Evaluate the polynominal at x

– Save the response of spline as a weight
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Convert TSpline3 Into an array

● Convert TSpline3 objects into a monolithic array
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GPU Implementation
● This monolithic array is now smaller in memory and slightly 

faster on CPU
● Copy large (~1.2 Gb) array onto GPU RAM at initialization, 

keep it there (read-only resource)
● Every iteration, evaluate all splines with a CUDA kernel and 

push the weight from each spline back onto CPU RAM
● GPU implementation yields ~20 speed-up over TSpline3 

version for the evaluation of 4,000,000 splines
– Monolith array is ~3-5x faster on GPU

● Many ways to improve this basic implementation
– Use of shared memory
– Asynchronous data transfer
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Analysis Deployment
● As previously mentioned, analysis uses a Markov 

Chain Monte Carlo to sample the high 
dimensional space of the model with respect to the 
data

● MCMC is very scalable to high numbers of 
parameters
– 5 Detector samples demand ~200 parameter fit

● This equates to needing ~ 50 million MCMC 
samples

● With each step taking ~5 seconds if executed on 
CPU, this means 2800 CPU days

● In GPU mode, this is ~140 GPU days 
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Cluster Deployment
● Multiple MCMC runs can be executed and combined

– Each chain produces independent samples

● This lends itself perfectly to distributing the analysis 
load across a GPU HPC cluster

● Run multiple chains using the same model and data, 
but different starting configuration 

All chains converge on the same 
stationary distribution
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GPU HPC Cluster

MCMC chain

MCMC chain

MCMC chain

MCMC chain

MCMC chain

MCMC chain

MC samples, 
Splines etc

Combine output

Data file 

job_script.py

….

Chains are considered 
independent samples 
and can simply be 
added together

We would like to acknoledge the SES (Science Engineering South) Centre 
for Innovation service (CFI) Emerald HPC cluster for their support

370 NVIDIA M2090 GPUs
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T2K 2014 Oscillation Results

First hints of CP violation in the 
lepton sector

Current world leading 
measurement of θ23 Results from the Bayesian analysis presented in this talk. 

When combined with reactor measurements (Daya Bay 
etc), constraint on δ

cp
 emerges.

Currently writing paper for submission to Phys. Rev. D. 

PRELIMINARY

PRELIMINARY

PRELIMINARY
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Conclusions
● What was once an unfeasible reweighting method has been 

made possible with the use of GPUs
● Calculation of oscillation probability with matter effects saw 2 

orders of magnitude speed-up
● Response function calculations saw ~20 speed-up
● In general, the analysis saw a ~20 speed-up

– Using Emerald cluster, 1 fit takes 0.5 days (compared to ~10 days)

– Move more reweighting (all) functionality to GPU to improve

● Utilized the Emerald HPC facility to run thousands of validation 
fits and finally the official result

●  “Accelerated Event-by-Event Neutrino Oscillation Reweighting 
with Matter Effects on a GPU” - JINST 9 2014
– http://arxiv.org/abs/1311.7579

● http://hep.ph.liv.ac.uk/~rcalland/probGPU/

http://arxiv.org/abs/1311.7579
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Thankyou for your attention!
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Backup Slides
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Benchmark Code Snippet

 clock.Start();

  for (int i = 0; i < N; ++i)
    {
      bNu>SetMNS( nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], 100.0, true );
      bNu>propagateLinear( 2, 295, 2.6 );
      sample_weights[i] = bNu>GetProb(2, 2);
    }

  clock.Stop();

  clock.Start();

#pragma omp parallel for num_threads(4)
  for (int i = 0; i < N; ++i)
    {
      bNu>SetMNS( nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], 100.0, true );
      bNu>propagateLinear( 2, 295, 2.6 );
      sample_weights[i] = bNu>GetProb(2, 2);
    }

  clock.Stop();

  clock.Start();

  setMNS(nominal[0], nominal[2], nominal[1], nominal[3], nominal[4], nominal[5], true);
  GetProb(2, 2, 295, 2.6, energy, N, sample_weights);

  clock.Stop();

CPU

OpenMP

CUDA
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extern "C" __host__ void GetProb(int Alpha, int Beta, double Path, double Density, double *Energy, int n, 
double *oscw)
{                                         
  size_t dmsize = 3*3*sizeof(double);
  typedef double dmArray[3];
  dmArray *d = (dmArray*)malloc(dmsize);
  memcpy(d, &dm, dmsize);
  dmArray *dm_device;
  cudaMalloc((void **) &dm_device, dmsize);
  cudaMemcpy(dm_device, dm, dmsize, cudaMemcpyHostToDevice);
                      
  size_t mixsize = 3*3*2*sizeof(double);
  typedef double mixArray[3][2];
  mixArray *m = (mixArray*)malloc(mixsize);
  memcpy(m, &mix, mixsize);
  mixArray *mix_device;
  cudaMalloc((void **) &mix_device,mixsize);
  cudaMemcpy(mix_device, mix, mixsize, cudaMemcpyHostToDevice);
                         
  size_t size = n * sizeof(double);
  double *energy_device = NULL;

  cudaMalloc((void **) &energy_device, size);
  cudaMemcpy(energy_device, Energy, size, cudaMemcpyHostToDevice);
                
  double *osc_weights;
  cudaMalloc((void **) &osc_weights, size);

  dim3 block_size;
  block_size.x = 512;

  dim3 grid_size;
  grid_size.x = (n / block_size.x) + 1;

  propagateLinear<<<grid_size, block_size>>>(Alpha, Beta, Path, Density, mix_device, dm_device, energy_device, 
osc_weights,n);
                               
  cudaMemcpy(oscw, osc_weights, size, cudaMemcpyDeviceToHost);
  clean_up(); // cudaFree everything
}

Copy mixing matrix and mass 
matrix (matter effects) to 
device

Copy Monte Carlo event 
energies to device

Execute kernel

Copy oscillation weights 
back to host

Could copy to 
constant / texture 
memory
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● To evaluate the posterior distribution, need to integrate over high-dimensions
● MCMC provides an efficient way to perform the ~200-dimensional integral
● MCMC performs a semi-random walk through parameter space, following the path  of the 
likelihood function

● Can run multiple chains on a cluster and combine output

Markov Chain Monte Carlo
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Method

1

2

3

Throw 200 proposed new 
values of parameters

Is new state better than 
current?
Accept or reject

Complete cycle ~20 
million times

Evaluate likelihood function

performed on GPU

Time per step ~0.3 secondsWrite to disk
~ 20x speed-up
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Creating detector PDFs

● Use detector Monte Carlo to construct empirical PDFs of expected neutrino 
data distributions

● Apply neutrino oscillation model (and systematic model) by reweighting MC
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