Speaker
Description
We extend the Particle-flow Neural Assisted Simulations (Parnassus) framework of fast simulation and reconstruction to entire collider events. In particular, we use two generative Artificial Intelligence (genAI) tools, conditional flow matching and diffusion models, to create a set of reconstructed particle-flow objects conditioned on hadrons from CMS Open Simulations. While previous work focused on jets, our updated methods now can accommodate all particle-flow objects in an event along with particle-level attributes like particle type and production vertex coordinates. This approach is fully automated, entirely written in Python, and GPU-compatible. Using a variety of physics processes at the LHC, we show that the extended Parnassus is able to generalize beyond the training dataset and outperforms the standard, public tool Delphes.
AI keywords | transformers;flow matching;flow;diffusion;generative models |
---|