Historically, nuclear measurements have played a primary role in nuclear fusion experiments, such as those conducted on tokamaks. The notable example is given by the measurement of the neutron counts which provides the direct estimation of the fusion power. This is an essential parameter to know, in particular for the forthcoming DT fusion reactors.
The advent of neutron and gamma ray...
A deuterium-tritium (DT) fuel mix has been commonly proposed for the first generation fusion power plants. Majority of the DT reaction energy is carried away by the 14 MeV DT neutrons; thereby, monitoring of the fusion power (Pfus) and control of the plasma burn can be accurately done through the neutron diagnostics. Quite a limited experience exists in the integrated neutron diagnostics for...
Besides the well known emission of a 14 MeV neutron and a 3.5 MeV alpha particle, the D-T fusion reaction may also evolve with a secondary branch in which a 17 MeV gamma-ray is emitted together with a 5He nucleus. The physical properties of this secondary branch, though, were poorly known because of its very low probability to occur of about 10-5.
The second and third D-T experimental ...