Ricerca di anomalie in eventi completamente adronici prodotti all'LHC nell'esperimento ATLAS mediante l'utilizzo di Reti Neurali a grafo (GNN)

12 Apr 2023, 19:38
1m
ex-Monastero dei Benedettini (Catania)

ex-Monastero dei Benedettini

Catania

Piazza Dante, 32
Poster Poster

Speaker

Graziella Russo (Istituto Nazionale di Fisica Nucleare)

Description

Graph Neural Networks provide a promising technique for performing Anomaly Detection tasks, by expressing potentially heterogeneous detector information in graph form. In our approach, graphs can be used to represent large-radius jets with interconnected topocluster "nodes", leveraging graph information and message passing to identify unexpected signatures as anomalies. We will discuss our ongoing work based on the open data of LHC Olympics 2020 and its application for ATLAS Run 3 diboson searches in fully hadronic final states.

Primary author

Graziella Russo (Istituto Nazionale di Fisica Nucleare)

Presentation materials