Conveners
Neutrino Telescopes
- Elisa Bernardini (Istituto Nazionale di Fisica Nucleare)
Neutrino Telescopes
- Elisa Bernardini
Neutrino Telescopes
- Chiara Sirignano (Istituto Nazionale di Fisica Nucleare)
Neutrino Telescopes
- Daniele Gibin (Istituto Nazionale di Fisica Nucleare)
Neutrino Telescopes
- Chiara Sirignano (Istituto Nazionale di Fisica Nucleare)
IceCube has discovered a flux of astrophysical neutrinos and presented evidence for the first neutrino sources, a flaring blazar known as TXS 0506+056 and the active galaxy NGC 1068. However, the sources responsible for the majority of the astrophysical neutrino flux remain elusive. High-energy neutrinos can be produced when cosmic rays interact at their acceleration sites and during...
Being for centuries a magnificent and enigmatic presence in the night sky the Milky Way became during the last decades the target of multi-messenger observations at increasing energies.
In this talk we will focus on its γ-ray and neutrino diffuse emissions which recently has been both observed up to the PeV.
One of the main aims of these measurements is to understand the origin and the...
In 2013, IceCube detected a diffuse flux of astrophysical neutrinos between a few TeV up to multiple PeV.
Meanwhile, this flux has been established in multiple detection channels with high significance, and with added data the accuracy of these observations have been improved in the recent years. The observed flux is a combination of extragalactic and galactic origin and indications are...
The ANTARES neutrino telescope was located in the Mediterranean Sea, not far from Toulon (France). It was operational from 2007 to 2022, before being dismantled. Its instrumented volumeof 0.01 km$^3$ equipped with photomultipliers made it possible to detect neutrinos with energy from some GeV to PeV. The location of ANTARES allows for an advantageous view of the Southern sky in the search of...
Neutrino telescopes are the instruments for the detection of high energy cosmic neutrinos. The ANTARES detector operated offshore Toulon (France) for 16 years until 2022, while KM3NeT-ARCA infrastructure is under construction in Southern Italy.
The ANTARES telescope was composed of 12 strings, each equipped with 75 optical modules. Each optical module contained one 10” photomultiplier tube...
The discovery of a high energy neutrino from IceCube coincident in time with flaring activity in gamma-rays from TXS 0506+056 solidified neutrinos as an integral part of the emerging field of multimessenger astrophysics. From the direction of the source, an archival neutrino flare was also identified and contributed to the significance of TXS 0505+056 as a neutrino source. An alert stream for...
The IceCube Neutrino Observatory at the South Pole is the world's largest neutrino telescope, but it can be also considered as one of the largest particle detectors ever built, providing a unique window to physics beyond the Standard Model at energies unreachable in man-made accelerators. It can cover a wide range of neutrino energies, from few GeV to PeVs, and also detect other particles...
Three new analyses related using old Kamiokande data recorded in 1987 are reported.
The first analysis is for 11 neutrino events in the Kamiokande-II SN1987A data. It is well known that there is a seven second gap between the 9th and 10th event. It is pointed out that no cosmic ray muon event with a rate of 0.37 Hz was detected during this period. Furthermore, no low-energy background event,...
Evidence for the existence of dark matter strongly motivates the efforts to study its unknown properties. Additionally, the origin of high-energy astrophysical neutrinos detected by IceCube remains uncertain. If dark matter and neutrinos couple to each other, we can search for a non-zero elastic scattering cross section. The interaction between an isotropic extragalactic neutrino flux and dark...
The XENONnT experiment, which is the current phase of the XENON project, located at Laboratori Nazionali del Gran Sasso (Italy), aims to directly detect WIMP dark matter employing a dual-phase TPC with a 5.9 tonnes liquid xenon target. The first science run collected a total exposure of more than 1 tonne-year. The search for nuclear recoils induced by WIMPs, performed with a blind analysis,...
Since 2020, Super-Kamiokande (SK) detector has been updated by loading gadolinium (Gd) as a new experimental phase, “SK-Gd”. In the SK-Gd experiment, low-energy electron antineutrinos via inverse-beta decay can be searched with efficient neutron identification thanks to high cross-section and high energy gamma-ray emission of thermal neutron capture on Gd. Until July 2022, the observation is...
DarkSide-20k (DS-20k) will probe the dark matter WIMP hypothesis by looking for WIMP-nucleon elastic scattering with a dual-phase time projection chamber (TPC) detector filled with 50 tonnes of low-radioactivity liquid argon extracted from underground sources. Besides the primary physics goal of DS-20k, the low-energy threshold (of about 0.5 keV for nuclear recoils) of the detector will allow...
The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) is a NaI based dark matter search that will perform a model-independent cross-check of the longstanding DAMA/LIBRA result. The experiment is currently under construction at the Laboratori Nazionali del Gran Sasso, Italy and will use NaI crystals operated as scintillating calorimeters. These...
IceCube recently observed neutrino emission from the nearby active Seyfert galaxy NGC 1068 in the TeV energy range. This finding suggests that active galactic nuclei (AGN) could be a source type contributing to the diffuse high-energy astrophysical neutrino flux. The dense environments near the supermassive black holes and the acceleration of cosmic rays in the coronae offer suitable...
Besides detecting ultra-high-energy (UHE) cosmic rays, the Pierre Auger Observatory offers a remarkable exposure to neutrinos above $10^{17} \mathrm{eV}$. Since the beginning of data taking, the Observatory has been involved in setting up some of the most stringent upper limits to the neutrino flux in the UHE range. During this time it has also been involved in various multi-messenger follow...
IceCube’s groundbreaking discovery of an all-flavor diffuse, extragalactic neutrino flux has ignited a new era in astrophysics. This revelation, coupled with the identification of potential neutrino sources, has spurred the development of next-generation neutrino telescopes with significantly enhanced sensitivity. These upcoming detectors aim to decipher the enigma behind the diffuse neutrino...
The Trinity Observatory is a proposed UHE-neutrino detector with a core-energy range of 10^6 GeV - 10^10 GeV, bridging the observational gap between IceCube and UHE radio detectors. Trinity is a system of 60x5 degree^2 wide field-of-view air-shower imaging telescopes that detect Earth-skimming tau neutrinos from mountain tops. Trinity's primary science objectives are point-sources, the diffuse...
The Radio Neutrino Observatory - Greenland (RNO-G) is currently under construction in proximity of Summit, 3216 m above sea level.
The observatory consists of an array of independent stations, each including both a deep component (with fifteen vertically and horizontally polarized antennas in three 100m-deep boreholes, configured partially as a phased array trigger) and a shallow component...
The Radio Neutrino Observatory - Greenland (RNO-G) is dedicated to search for ultra-high-energy (UHE) neutrinos with energies above 10$\,$PeV by observing radio pulses from neutrino interactions in the Greenland ice shield. The detector will consist of 35 autonomously operating stations, each equipped with 24 antennas, deployed over an area of about 50$\,$km$^2$. With an estimated sensitivity...
The multipurpose JUNO Experiment located in China, whose central detector uses 20 kt liquid scintillator, is on track to completion of construction in 2023. Its primary goal is to determine the Neutrino Mass Ordering by leveraging its large target mass and excellent energy resolution of 3% at 1 MeV. The unique properties of JUNO position it to have a large potential for real-time solar...
The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multi-purpose liquid scintillator detector which is located at a 700-m underground laboratory in the south of China (Jiangmen city, Guangdong province). The primary goals of JUNO are to determine the neutrino mass ordering and precisely measure the neutrino oscillation parameters. In addition, the massive volume of the JUNO...
Borexino was a large liquid scintillator experiment designed for real-time detection of low-energy
solar neutrinos, located at the underground Laboratori Nazionali del Gran Sasso in Italy. During
more than ten years of data taking, it has measured all the neutrino fluxes produced in the proton-proton chain, i.e. the main fusion process accounting for 99 % of the energy production of the...
Core-Collapse Supernovae are violent astrophysical events that are an abundant source of neutrinos of all flavours. The study of neutrinos from this source can give us insights into the nature of the core-collapse mechanism and into neutrino physic topics.
The Deep Underground Neutrino Experiment (DUNE) is a future multi-purpose neutrino experiment under construction in the US. One of it's...
The IceCube Neutrino Observatory measures high-energy atmospheric neutrinos with high statistics. These atmospheric muon neutrinos are produced in cosmic ray interactions in the atmosphere, mainly by the decay of pions and kaons. The rate of the measured neutrinos is affected by seasonal temperature and pressure variations in the stratosphere, which are expected to increase with the particle's...
The Baikal-GVD is a large neutrino telescope being constructed in Lake Baikal. Recently it is the largest operating neutrino telescope in Northern Hemisphere. The winter expedition of the year 2023 concludes in the three-dimensional array of 3 456 photo-sensitive units (optical modules) installed in total. The data collection is allowed by the design of the experiment while being in a...