Speaker
Description
In multi-messenger era, the scienti?c output of gravitational waves will be maximized when combined with its electromagnetic counterpart data. The effi?ciency of electromagnetic follow-up for given gravitational wave trigger largely depends on the localization error and the remain time to merger obtained from gravitational wave. Based on the ?fisher matrix method, we estimated the localization uncertainty and early warning performance of three third generation gravitational wave detector network for 1.4M?sun-1.4Msun? BNS mergers at fi?xed distance of 40Mpc, 200Mpc, 400Mpc, 800Mpc, 1600Mpc, and for 1.4Msun?-1.4M?sun BNS mergers following the delay time distribution. Especially, the di?fference of localization and early warning ability between a ET-like detector in Australia and a CE-like detector in Australia is discussed.