Speaker
Description
Nowadays a perspective of production of heavy neutron-enriched nuclides encourages the scientists to investigate theoretically as well as experimentally the multinucleon transfer (MNT) reactions with heavy ions [1,2]. This type of reaction is occurred at low energies and leads to a variety of binary fragments formed around the projectile and target with dozens of transferred nucleons between them.
Usually, yields of the MNT products drops exponentially with increasing the number of transferred nucleons between the colliding nuclei, but their values can be rather high for experimental investigation of yet unknown neutron-enriched nuclei in certain cases. Special attention is paid to the theoretical models of MNT processes able to provide a description of the key features of collision dynamics and make reasonable predictions for distributions of reaction fragments. Among such the models the Langevin-type approaches allow one to achieve a good agreement in complex description of energy, angular and mass distributions of the reaction products. Thus, the various reactions with spherical and statically deformed nuclei such as Sm + Sm, Xe + Pb, Gd + W, U + U and U + Cm have been analyzed within a dynamical Langevin-type approach providing a rather well agreement of calculated and experimental data [3,4].
As the next step, we aimed to analyze the MNT processes in pairs of nuclei with different N/Z ratios. In such combinations the early stage of nucleus-nucleus collisions is characterized by fast redistribution of neutrons and protons called N/Z equilibration or isospin-relaxation. This phenomenon significantly influences the collision dynamics and "neutronrichness" of the fragments that can be visible in isotopic yields.
1. L. Corradi et al., Nucl. Instr. Meth. B 317, 743 (2013)
2. V.I. Zagrebaev and W. Greiner, Phys. Rev. C 87, 034608 (2013)
3. A.V. Karpov and V.V. Saiko, Phys. Rev. C 96, 024618 (2017)
4. V.V. Saiko and A.V. Karpov, Phys. Rev. C 99, 014613 (2019)