Speaker
Description
Accurate studies on 13C spectroscopy have great impact in the present understanding of the role played by extra-neutrons in stabilizing alpha-cluster structures formed in light nuclei. 13C excited states are in fact the simplest systems that can be formed by adding a neutron to a triple-alpha molecular-like structure. Their spectroscopic properties are therefore a fundamental benchmark for theoretical models aiming at describing clustering in light nuclei. To improve our knowledge of 13C structure, we performed a comprehensive R-matrix fit of $\alpha$+9Be elastic and inelastic scattering data in the energy range Ex≈3.5 – 10 MeV at several angles. To carefully determine the partial decay widths of states above the $\alpha$-decay threshold we included in the fit procedure also 9Be($\alpha$,n0)12C and 9Be($\alpha$,n1)12C cross section data taken from the literature. This analysis allows to improve the (poorly known) spectroscopy of excited states in 13C in the Ex≈12-17 MeV region, and tentatively suggests the presence of a large-deformation negative-parity molecular band.