Conveners
Orals LM 001: MICRO A
- Simon, R. Bandler (NASA-GSFC)
Orals LM 001: BOLO 1
- Sunil Golwala (California Institute of Technology)
Orals LM 001: MICRO KID
- Gerhard Ulbricht (Dublin Institute for Advanced Studies)
Orals LM 001: NOVEL
- Kent Irwin (Stanford)
Orals LM 001: MACRO
- Lucia Canonica
Orals LM 001: MICRO B
- Stephan Friedrich (Lawrence Livermore National Laboratory)
Orals LM 001: THEO
- Ilari Maasilta (University of Jyvaskyla)
Description
Low Temperature Detector Development and Physics
HOLMES is an experiment with the goal of performing a direct measurement of the neutrino mass from the electron capture spectrum of 163Ho. In order to reach its goal sensitivity of 2 eV it is necessary to gather as many as 10e13 events in the three years projected live time of the experiment. To do so, HOLMES will deploy an array of 1000 low temperature calorimeters composed by a Transition...
The Advanced Telescope for High ENergy Astrophysics (ATHENA) will include the X-ray Integral Field Unit instrument (X-IFU). This instrument is baselined with an array of 3,168 transition-edge sensor (TES) pixels made with Mo/Au bilayers that will be AC biased and Frequency-Division Mutliplexed (FDM). Over the last few years, there has been intense effort at NASA/GSFC and SRON to better...
At SRON Netherlands Institute for Space Research, we are developing X-ray microcalorimeters as backup option for the baseline detectors in the X-IFU instrument on board of the ATHENA space mission led by ESA and to be launched in the early 2030s.
New, mixed 5X5 TiAu Transition Edge Sensor (TES) arrays where TESs have different high aspect ratios and high resistance have been fabricated to meet...
Intense development of nanobolometers has taken place for well more than a decade with the aim to reach noise equivalent power NEP = 10e-20 W/rtHz. Furthermore, observation of single photons at increasingly long wavelengths is a long-standing effort. We present a microwave nanobolometer based on superconductor/normal-metal/superconductor Josephson junctions. Using positive electrothermal...
Future space-based observatories for the far infrared and sub-mm wave radiation, such as SPICA and the OST telescope, will need ultra-sensitive background limited detectors at frequencies above 1THz. We develop a KID that combines photon noise limited performance, high optical efficiency, broad band and dual polarization radiation coupling operating between 1.4 and 2.8THz, with a NEP below...
After more than 15 years of development, the technical maturity of MKIDs has greatly improved. Array level demonstrations of imagers and spectrometers now exist, measuring a wide coverage of frequencies, and with multiple optical coupling schemes. However, several different technical challenges must be overcome before MKIDs reach the point where they become a general solution for the full...
In this talk, I will present how we combine spectroscopy and imaging capabilities inside one compact device for submillimeter observations. This system is an interferometric system that has been designed to fulfill the spectroscopic requirements of a space mission. The idea is to bring a Fabry-Pรฉrot spectrometer very close to the detector (silicon bolometers) such that they form a coupled,...
Arrays of lumped-element kinetic inductance detectors (LEKIDs) optically coupled through an antenna and transmission-line structure are a promising candidate for future cosmic microwave background (CMB) experiments. Using the separated architecture of a LEKID enables optical coupling to be realised, without the detector becoming susceptible to two-level system noise created by the...
Microwave Kinetic Inductance Detectors (MKIDs) were invented in 1999 at
Caltech and JPL with the promise of both high detector sensitivity and
an easy solution to scale into large arrays. Over 20 years of
significant development, MKIDs have fulfilled this promise with their
sensitivity approaching the fundamental limit and the pixel count
reaching 10^5. The technical maturity of MKIDs have...
I describe the design, principle of operation and results from our X-ray TKID prototype arrays. These superconducting pair-breaking detectors exploit the ease with which MKIDs can be frequency-domain multiplexed to create large arrays of X-ray microcalorimeters with absorbers that can be close-packed and tiled. Arrays of 20,000+ TKIDs are potentially achievable using frequency domain...
To answer the question whether there is life on exoplanets a new generation of instruments is required that will take spectra of these planets. Future instruments for visible/near-IR wavelengths therefore require noiseless, photon counting detectors, with energy resolution.
Microwave Kinetic Inductance Detectors (MKIDs) are photon-counting superconducting detectors which provide energy...
The kinetic inductance detector (KID) offers an elegant and convenient solution to building large-format arrays operating at mm-wavelengths. Scaling alternative technology to the large detector counts required for future experiments requires auxiliary multiplexing components that can significantly increase the complexity and cost. Arrays of KIDs require no additional cryogenic multiplexing...
Superconducting nanowires have demonstrated remarkable performance in terms of efficiency, jitter, dark counts, and reset time. As a result, they have found application in fields ranging from deep-space communications to quantum communications. And recent discoveries have shown remarkable advances in the important performance parameters. However, a number of key developments remain either not...
Superconducting Nanostrip Single-Photon Detectors (SNSPDs) are promising devices in many fields ranging from single-photon source characterization to optical communication and quantum cryptography. An important feature of SNSPDs is their low dark count rate (DCR), that increases close to the critical current where the detection efficiency is higher. In such a region DCR is dominated by a...
In recent years, the development of fast and low-dark-count single-photon detectors for photonic quantum information applications promise a radical improvement in our capacity to search for dark matter. The advent of superconducting nanowire detectors, which have fewer than 10 dark counts per day and have demonstrated sensitivity from the mid-infrared to the ultraviolet wavelength band,...
The Quantum Capacitance Detector (QCD) is a new high-sensitivity direct detector under development for low background applications such as far-infrared spectroscopy from a cold space telescope. The QCD has demonstrated an optically-measured noise equivalent power of 2x10-20 W Hz-1/2 at 1.5THz, making it among the most sensitive far-IR detectors systems ever demonstrated, and meeting the...
Large low temperature detectors are widely used in nuclear and particle physics, from Dark Matter Searches to Double Beta Decay and, more generally, in rare event searches.
The ability to construct large calorimeters from a wide variety of materials is one of the important advantages of this technology.
The possibility - in addition to the heat- to use a second readout channel (scintillation...
Background rejection plays a key role for experiments searching for rare events, like neutrino-less double beta decay and dark matter interactions.
Among the several detection technologies that were proposed to study these processes, cryogenic calorimeters stand out for the excellent energy resolution, the ease in achieving large source mass, and the intrinsic radio-purity. Moreover, they can...
The high dynamic range as well as the very good linearity in combination with an excellent energy resolution make metallic magnetic calorimeters (MMCs) ideal detectors for different applications in high-resolution X-ray spectroscopy. The maXs detector family consists of several 1- and 2-dimensional MMC arrays based on paramagnetic temperature sensors made of Ag:Er or Au:Er that are optimized...
Metallic magnetic calorimeters (MMCs) combine the very high energy resolution characteristic of cryogenic gamma detectors with a very small nonlinearity and a reproducible response function due to their all-metallic design and their thermodynamic equilibrium sensor. These attributes make MMCs well-suited for photon and particle spectroscopy applications requiring the highest accuracy. We are...
As demanding applications such as x-ray spectroscopy push transition-edge sensors (TESs) to even better energy resolution, it is critical to understand all their potential noise sources. Since the early days of TESs, many groups have observed a broadband voltage noise that could not be explained by known noise mechanisms. In 2004, Ullom et al.[1] showed this unexplained noise could be...
Superconducting thin-films are central to the operation of many kinds of quantum sensors and quantum computing devices: Kinetic Inductance Detectors (KIDs), Travelling-Wave Parametric Amplifiers (TWPAs), Qubits, and Spin-based Quantum Memory devices. In all cases, the nonlinearity resulting from the supercurrent is a critical aspect of behaviour, either because it is central to the operation...
TES based detectors nowadays show performances which make them very attractive for many applications. Despite these successes, there have been many reports of excess noise in TESs which still lack physical explanation. More specifically, it is a well known experimental fact that in many cases excess noise in TESs can be described accurately by assuming an increased Johnson noise power, which...
When quasiparticles in a BCS superconductor recombine into Cooper pairs, phonons are emitted within a narrow band of energies above the pairing energy at 2$\Delta$. These phonons either further Cooper break pairs after some time, or escape to the thermal bath of the system. We show that the quasiparticle lifetime in a superconductor can be increased by more than an order of magnitude by...