Speaker
Subhash Mahapatra
(KU Leuven)
Description
Lattice QCD results indicate a large amount of entropy associated with the quark-antiquark pair near the deconfinement temperature. The lattice data show a sharp peak in the quark-antiquark entropy near the transition temperature. Further, this entropy increases with inter quark distances. In this work, we used the gauge/gravity duality to reproduce these lattice results. For this purpose, we consider a phenomenological bottom-up Einstein-Maxwell-dilaton gravity model and analytically construct the black hole solutions whose dual boundary theories satisfy the properties of confinement as well as deconfinment. We study the entropy of the quark-antiquark pair in confinement/deconfiment phases and find that our holographic model qualitatively reproduces the corresponding lattice results for the entropy. We further provide holographic results with chemical potential
Author
Subhash Mahapatra
(KU Leuven)