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General Introduction

I AdS/CFT correspondence or the gauge/gravity duality is a
conjectured duality between a gravity theory on anti de-Sitter
(AdS) spacetime and a gauge theory living on its boundary1.

I The gauge/gravity duality has become a valuable method for
investigating strongly coupled gauge theory.

I It offers an intrinsically non-perturturbative framework that allows
one to study strongly coupled gauge theories both at vanishing
and at finite temperature, with and without chemical potential.

1J. Maldacena, Adv. Theor. Math. Phys 2 (1998) 231.
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Bulk Space-time

Boundary

Gravity in 5 

dimensions AdS 

spacetime 

Gauge theory lives at the 

boundary of AdS space in 4-

dimensions. 

I It is therefore a duality between gravitational and non -
gravitational theories.
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Dictionary

One can relate the observable in one theory to the observable of its
dual theory2

Gravity side Gauge theory side

Field φ Operator Ô

Metric gMN EM tensor Tµν

Hawking temperature T Gauge theory temperature T

Boundary value φ0 of the field φ corresponds to the source for the corresponding operator Ô.

The duality is, then, stated as

Z [φ0]AdS = ZÔ[φ0]boundary

2E. Witten, Adv. Theor. Math. Phys 2 (1998) 253; Gubser et al,
Phys. lett B 428 (1998) 105..
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The duality is, then, stated as

Z [φ0]AdS = ZÔ[φ0]boundary
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Applications

I Strongly coupled limit of one side corresponds to weakly coupled
limit of its dual side.

I This strong-weak nature of the gauge/gravity duality can be
exploited to compute useful quantities in a strongly coupled field
theory from relatively simpler calculations in its dual gravity
theory.

I The duality has been successfully applied to gain useful insights
into a number of fields like hydrodynamics, QGP,
superconductivity, entanglement entropy etc.

I Our aim in this work is to study some of lattice QCD results
qualitatively from the phenomenological bottom-up models of
gauge/gravity duality.

|
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Lattice Results

Figure: Lattice QCD result for the entropy
of the quark-antiquark pair as function of
temperature T/Tc for large quark-antiquark
separation. The result is taken from
Kaczmarek et al [PoS LAT2005 (2005) 192].

Figure: Lattice QCD result for the entropy
of the quark-antiquark pair as function of
quark-antiquark separation at temperature
T ' 1.3Tc . The result is taken from
Kaczmarek et al [PoS LAT2005 (2005) 192].

I Lattice data predicts sharp peak in the entropy near the transition temperature.
I It predicts growth of the entropy with the inter-quark distance. [ Starting point in the

“Deconfinement as an entropic self destruction” scenario of Kharzeev.]
I The entropy saturates to a constant temperature dependent value at large distances.
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I Our Aim is to construct a holographic QCD model with dual parameters fixed to some QCD
observables (string tension and light meson spectrum), and then investigate how this model
can predict similar results as the lattice data for e.g. entropy of the Q − Q̄ pair, P-loop etc.

I For this purpose, we consider a phenomenological bottom-up approach, where the gravity
theory is constrained by hand as to reproduce the desirable features of the boundary gauge
theory, without actually deriving them from a consistent truncation of an underlying string
theory.

I Caveat: The idea of understanding N = 3 QCD (or YM) from gauge/gravity duality implicitly
relies on the assumption that the features of the N = 3 theory are close enough to those of
its N =∞ counterparts.

I While a priori this assumption is not guaranteed to be true, however there are also strong
numerical evidences that suggest this might be the case.3

3M. Teper, PoS LATTICE2008, 010 (2008); M. Panero,
Phys. Rev. Lett. 103 (2009) 232001.
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Holographic model

We start with the Einstein-Maxwell-Dilaton action in five dimensions

SEM =
1

16πG5

∫
d5x
√−g

[
R − f (φ)

4
FMNF MN − 1

2
∂Mφ∂

Mφ− V (φ)
]
,

where G5 is the Newton constant in five dimension, V (φ) is the
potential of the dilaton field and f (φ) is a gauge kinetic function which
represents the coupling between dilaton (φ) and gauge field (AM ).
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In order to simultaneously solve Einstein-Maxwell-Dilaton equations,
we consider the following ansatz,

ds2 =
L2e2A(z)

z2

(
−g(z)dt2 +

dz2

g(z)
+ dy2

1 + dy2
3 + dy2

3

)
,

AM = At(z), φ = φ(z)

where we have assumed that various fields depend only on the redial
coordinate z. Here L is AdS length scale and in our notation z = 0
corresponds to the asymptotic boundary of the spacetime.

|
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EOMs

φ′′ + φ′
(
−3

z
+

g′

g
+ 3A′

)
− L2e2A

z2g
∂V
∂φ

+
z2e−2AA′2t

2L2g
∂f
∂φ

= 0

A′′t + A′t
(
−1

z
+

f ′

f
+ A′

)
= 0

g′′ + g′
(
−3

z
+ 3A′

)
− e−2AA′2t z2f

L2 = 0

A′′ +
g′′

6g
+ A′

(
−6

z
+

3g′

2g
)
− 1

z
(
−4

z
+

3g′

2g
)
+ 3A′2 +

L2e2AV
3z2g

= 0

A′′ − A′
(
−2

z
+ A′

)
+
φ′2

6
= 0

These equations can be solved analytically.

|
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A particular gravity solution

g(z) = 1− 1∫ zh

0 dx x3e−3A(x)

[∫ z

0
dx x3e−3A(x) +

2cµ2

(1− e−cz2
h )2

detG
]

φ′(z) =
√

6(A′2 − A′′ − 2A′/z)

At(z) = µ
e−cz2 − e−cz2

h

1− e−cz2
h

V (z) = −3L2z2ge−2A[A′′ + A′
(
3A′ − 6

z
+

3g′

2g
)
− 1

z
(
−4

z
+

3g′

2g
)
+

g′′

6g
]

where,

detG =

∣∣∣∣∣
∫ zh

0 dx x3e−3A(x)
∫ zh

0 dx x3e−3A(x)−cx2∫ z
zh

dx x3e−3A(x)
∫ z

zh
dx x3e−3A(x)−cx2

∣∣∣∣∣

A(z) = −c
8

z2

c = 1.16
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Thermodynamics of the gravity solution

Figure: T as a function of zh for µ = 0. In
units GeV.

Figure: F as a function of T for µ = 0. In
units GeV.

I AdS phase is dual to confinement.
I Black hole phase is dual to deconfinement.
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Thermodynamics of the gravity solution

Figure: T as a function of zh for various
values of the chemical potential µ. Here red,
green, blue, brown, cyan and magenta
curves correspond to µ = 0, 0.2, 0.4, 0.5,
0.6 and 0.673 respectively. In units GeV.

Figure: F as a function of T for various
values of the chemical potential µ. Here red,
green, blue, brown and cyan curves
correspond to µ = 0, 0.2, 0.4, 0.5, 0.6 and
0.673 respectively. In units GeV.

I AdS phase is dual to confinement.
I Black hole phase is dual to deconfinement.
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Wilson loop

I Consider a rectangular Wilson loop C living on the boundary
(z = 0) of five-dimensional space. The quark and antiquark are
set at y1 = `/2 and y1 = −`/2 respectively. Taking the limit
T →∞ allows one to read off the energy of such a pair from the
expectation value of the Wilson loop, namely,

〈W (C)〉 = e−TF (`)

|
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Holographic Wilson loop

I In gauge/gravity duality, the expectation value of the Wilson loop
is given by4

〈W (C)〉 = e−SNG

where

SNG = − 1
2πl2s

∫
dτdσ

√
−det gs, (gs)αβ = (gs)MN∂αX M∂βX N

is an area of a string world-sheet bounded by a curve C at the
boundary of AdS space.

4J. Maldacena, Phys. Rev. Lett. 80 (1998) 4859.
|
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EOM for string world sheet - connected solution

− / 2 / 2

z
*

z = 0

z = zh

Black hole

Connected

Fcon =
L2

πl2s

∫ z∗

0
dz

z2
∗

z2

√
g(z)e2As(z)−2As(z∗)√

g(z)z4
∗e−4As(z∗) − g(z∗)z4e−4As(z)

where z∗ is the turning point of the connected world sheet.
This turning point is related to separation length between the
quark-antiquark pair as

` = 2
∫ z∗

0
dz z2

√
g(z∗)

g(z)
e−2As(z)√

g(z)z4
∗e−4As(z∗) − g(z∗)z4e−4As(z)
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EOM for string world sheet - disconnected solu-
tion

− / 2 / 2

z = 0

z = zh

Black hole

Disconnected

On the other hand, the disconnected
configuration consists of two lines which
are separated by distance ` and are
extended from the boundary to the
horizon (or to z =∞).

Fdiscon =
L2

πl2s

∫ zh

0
dz

e2As(z)

z2

I Fdiscon is independent of z∗ and therefore of quark-antiquark
separation length ` as well.

I Both Fcon and Fdiscon are divergent quantities. The divergence
arises from z = 0 part of the integration. We use Kaczmarek et
al [arXiv:1605.07181] prescription to regularize the free energy.
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Free energy F of QQ̄ pair with AdS background

Figure: ` as a function of z∗ in AdS
background. In units GeV.

Figure: Fcon as a function of ` in AdS
background. In units GeV.

I The string world sheet does not penetrate deep into the bulk and saturates near z = zs ,
suggesting some kind of an “imaginary” wall in the bulk AdS which can not penetrated by
string world sheet.

I In the AdS phase, quark-antiquark pair is always connected by an open string and forms a
confined state.
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Free energy F of QQ̄ pair with AdS background

Figure: ` as a function of z∗ in
thermal-AdS background. In units GeV.

Figure: Fcon as a function of ` in
thermal-AdS background. In units GeV.

I F ∝ −1/` for small ` exhibiting Coulomb potential, and F = σs` for large ` exhibiting
confinement. These properties can be shown analytically.

I For AdS phase we have the famous Cornell expression F = −κ` + σs` for the
quark-antiquark pair.
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Free energy F of QQ̄ pair with AdS-BH back-
ground

Figure: ` as a function of z∗. Here µ = 0
and red, green and blue curves correspond
to zh = 1.5, 1.0 and 0.5 respectively.

Figure: ∆F = Fcon − Fdiscon as a
function of `. Here µ = 0 and red, green
and blue curves correspond to zh = 1.5, 1.0
and 0.5 respectively.

I No “imaginary” wall appears in the AdS-BH background. There exist an `max above which
connected string configuration does not exist.

I Phase transition from connected string solution to disconnected string solution as we
increase the string length `

|
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Free energy F of QQ̄ pair with AdS-BH back-
ground

Figure: ` as a function of z∗. Here µ = 0
and red, green and blue curves correspond
to zh = 1.5, 1.0 and 0.5 respectively.

Figure: ∆F = Fcon − Fdiscon as a
function of `. Here µ = 0 and red, green
and blue curves correspond to zh = 1.5, 1.0
and 0.5 respectively.

I The behaviour that `crit decreases with temperature is consistent with the physical
expectation that at higher and higher temperatures the boundary meson state would
eventually melt to a free quark and antiquark (deconfined phase) which on the dual gravity
side is described by the disconnected string configuration.

I Since for large separations, this disconnected string configuration which is independent of
separation length ` is more favorable, therefore the corresponding free energy of the
quark-antiquark pair is also independent of `. It implies that the string tension is zero and
there is no linear law confinement in the boundary theory dual to black hole phase.

|
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I For AdS phase: linear law confinement
: Polyakov loop expectation value vanishes

AdS phase is dual to confinement.

I For AdS-BH phase: no linear law confinement
: non-zero Polyakov loop expectation value.

AdS-BH phase is dual to deconfinement.

|
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Entropy of the QQ̄ pair

The entropy can be calculated from the quark-antiquark free energy F via the relation,

S = −
∂F
∂T

For AdS background we have only connected string solution. Therefore for this phase we have,

Scon = −
∂Fcon

∂T

However, for AdS black hole background we have two choices for S corresponding to two different
behaviours of F with respect to quark-antiquark separation length. For large separation, we have

Sdecon(` > `crit ) = −
∂Fdiscon

∂T

On the other hand for small separation, we have

Sdecon(` < `crit ) = −
∂Fcon

∂T

We find that these two distinct behaviours of F as a function of quark-antiquark separation
qulitatively capture the QCD result in their respective regime.
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Entropy in the deconfined phase

Figure: Entropy of the quark-antiquark
pair as a function of temperature in the
deconfined phase for various values of µ.
Here red, green and blue curves correspond
to µ = 0, 0.2, 0.4 and 0.6 respectively.

Figure: Lattice QCD result for the entropy
of the quark-antiquark pair as function of
temperature T/Tc for large quark-antiquark
separation. The result is taken from
Kaczmarek et al [PoS LAT2005 (2005) 192]

I A large amount of entropy associated with the quark-antiquark pair near the critical
temperature, as also observed in lattice QCD.

I Drawback: Entropy in the confined phase is zero.
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Entropy in the deconfined phase

I Another important lattice QCD result which our holographic model qualitatively reproduces is
to predict increase in the entropy of quark-antiquark pair as a function of distance between
them.

Figure: Entropy of the quark-antiquark
pair as a function of distance in the
deconfined phase for various
temperatures. Here µ = 0 and red, green
and blue curves correspond to
T/Tcrit = 1.1, 1.2 and 1.3 respectively.

Figure: Lattice QCD result for the
entropy of the quark-antiquark pair as
function of quark-antiquark separation at
temperature T ' 1.3Tc . The result is
taken from Kaczmarek et al [PoS
LAT2005 (2005) 192]

I However, as opposed to lattice QCD, the entropy in our model does not smoothly go to
saturation. There is a discontinuity in the entropy at `crit . This discontinuity in the entropy
arises again due to first order transition between different string surfaces at `crit .

I Drawback: Entropy in the confined phase is zero.
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With another form of scale factor

A(z) = −3
4

ln (az2 + 1) +
1
2

ln (bz3 + 1)− 3
4

ln (az4 + 1)

Figure: Red, green, blue, brown, cyan and
magenta curves correspond to µ = 0, 0.2,
0.4, 0.5, 0.6 and 0.673 respectively.

Figure: Red, green, blue, brown and cyan
curves correspond to µ = 0, 0.2, 0.4, 0.5,
0.6 and 0.673 respectively.

I Large black hole phase is dual to deconfinement.
I The phase dual to small black hole is quite similar to confined phase !.
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Figure: Red, green, blue, brown and cyan
curves correspond to µ = 0, 0.2, 0.4, 0.5,
0.6 and 0.673 respectively.
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Figure: ` as a function of z∗ in
thermal-AdS background.

Figure: Fcon as a function of ` in
thermal-AdS background.

I The boundary phase dual to small black hole phase seems to show linear confinement at low
temperatures. For too large `, the linear area law is gone again, because of the dominance
of the disconnected string configuration.

I Polyakov loop expectation value is extremely small, however it is strictly non-zero.
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Entropy in the phase dual to small black hole

Figure: Entropy of the quark-antiquark pair
as a function of temperature in the
specious-confined phase for various values
of µ. Here red, green, blue and brown
curves correspond to µ = 0.10, 0.15, 0.20
and 0.25 respectively.

Figure: Lattice QCD result for the entropy
of the quark-antiquark pair as function of
temperature T/Tc for large quark-antiquark
separation. The result is taken from
Kaczmarek et al [PoS LAT2005 (2005) 192]

I A large amount of entropy associated with the quark-antiquark pair near the critical
temperature, as also observed in lattice QCD.

I The non-zero entropy in the specious-confined phase arises precisely due to the fact that the
dual gravity background of specious-confined phase is a (small) black hole, which depends
on temperature. In the usual AdS/CFT correspondence, the confined phase is generally dual
to pure AdS (without horizon and temperature) and therefore the entropy of the quark pair is
inherently zero in those confined phases. However, in our model, temperature dependence
of the small black hole phase naturally leads to temperature dependence in the
quark-antiquark entropy in the dual confined phase.
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Conclusions

I We use the gauge/gravity to study the entropy of the quark-antiquark pair.

I We constructed a holographic model for confined and deconfined phases. In some cases,
these phases can be described by black holes in the gravity side.

I We studied free energy and entropy of the quark-antiquark pair. Our holographic model
qualitatively reproduces lattice QCD results.

I In the future, we are planning to investigate the effects of anisotropy in the entropy of
quark-antiquark pair near the deconfinement temperature.

I We are also planning to study the entanglement entropy in terms of growing
quark-separation.
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Thank You
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