9–11 Dec 2015
Dipartimento di Fisica, Univ. Bari - INFN Sezione di Bari
Europe/Rome timezone
SM&FT 2015 Computational approaches in Quantum Field Theory, Statistical Mechanics and Complex Systems

Real-time simulation of large open quantum spin systems driven by dissipation

11 Dec 2015, 11:30
40m
Aula B

Aula B

Speaker

Prof. Uwe-Jens Wiese (Bern University)

Description

The real-time evolution of large open quantum spin systems, whose dynamics are entirely driven by dissipative couplings to an environment, is studied in two and three spatial dimensions. Dissipative processes with Hermitean quantum jump operators lead from the ordered phase of the Heisenberg or XY-model into a disordered phase at late times. The corresponding Lindblad equation is solved using an efficient cluster algorithm. The symmetries of the dissipative process determine the time scales that govern the approach towards equilibrium. One encounters slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. The non-equilibrium transport of magnetization between a Heisenberg ferromagnet and an antiferromagnet, initially isolated from each other in two separate parts of the volume, is also investigated. Finally, a cooling process with non-Hermitean quantum jump operators, which leads into a Bose-Einstein condensate of hard-core bosons as a dark state, is simulated with a worm algorithm, and the different time-scales that arise during equilibration are again investigated.

Primary author

Prof. Uwe-Jens Wiese (Bern University)

Presentation materials