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The first “digital computer” in Babylonia about 2400 b.c.

The first “analog computer”: Antikythera for determining the
position of celestial bodies, Crete, about 100 b.c.
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The first programmable computer:
mechanical “difference engine”
Charles Babbage (1791-1871)

was realized by his son after Babagge’s death.



Konrad Zuse’s (1910-1992) relay-driven computer Z3

From the vacuum-tube ENIAC to the IBM Blue Gene
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Richard Feynman’s vision of 1982

“I’m not happy with all the analyses that go with just the classical
theory, because nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better make it quantum mechanical, and by
golly it’s a wonderful problem, because it doesn’t look so easy.”



Ultra-cold atoms in optical lattices as analog quantum
simulators

Transition from a superfluid to a Mott insulator

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I. Bloch,
Nature 415 (2002) 39.
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Real-time path integral describing a quench from H0 to H

pρ0 [m(t)] =
1

Z0
Tr [exp(−βH0) exp(iHt)|m(t)〉〈m(t)| exp(−iHt)]

=
1

Z0

∑
[n0,n]

exp(−S0E [n0]) exp(i(SR [n] + iSI [n]))δn(t),m(t)

=
Z

Z0
〈cos(SR)δ〉, Z0 =

∑
[n0]

exp(−SE [n0])

Path integral for a corresponding Euclidean ensemble

Z =
∑
[n0,n]

exp(−SE [n0]− SI [n])

Large error to signal ratio:

∆pρ0 [m(t)] =
Z

Z0

√
〈cos2(SR)δ2〉 − 〈cos(SR)δ〉2 ≈ Z

Z0

√
〈δ〉/2

∆pρ0 [m(t)]

pρ0 [m(t)]
=

√
〈δ〉/2

〈cos(SR)δ〉
=

Z
√
〈δ〉/2

Z0pρ0 [m(t)]
∼

exp(∆fVt)
√
〈δ〉/2

pρ0 [m(t)]



Real-time evolution of the density matrix of an isolated
quantum system

∂tρ(t) = i [ρ(t),H(t)], ρ(t) = U(t, t0)ρ(t0)U(t0, t),

U(t0, t) = T exp

(
−i

∫ t

t0

dt ′ H(t ′)

)
Why is this so difficult to compute?

It should be easier to compute the real-time evolution when
the system is under observation.



Real-time evolution of the density matrix of an isolated
quantum system

∂tρ(t) = i [ρ(t),H(t)], ρ(t) = U(t, t0)ρ(t0)U(t0, t),

U(t0, t) = T exp

(
−i

∫ t

t0

dt ′ H(t ′)

)
Why is this so difficult to compute?

It should be easier to compute the real-time evolution when
the system is under observation.



Outline

A Brief History of Computing

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions



Measurement process of an observable Ok

Ok |λ〉 = ok |λ〉, Pok =
∑
λ

|λ〉〈λ|,

P2
ok

= Pok , TrPok = gok ,
∑
ok

Pok = 1

Evolution of the density matrix after one measurement

ρo1 = Po1ρPo1 , ρ′ =
∑
o1

ρo1 =
∑
o1

PokρPo1 ,

Trρ′ =
∑
o1

Tr(Po1ρPo1) =
∑
o1

Tr(ρPo1) = 1

Evolution of the density matrix after N measurements

ρo1,o2,...,oN = PoN U(tN , tN−1) . . .U(t3, t2)Po2U(t2, t1)Po1ρ

× Po1U(t1, t2)Po2U(t2, t3) . . .U(tN−1, tN)PoN ,

ρ′ =
∑

o1,o2,...,oN

ρo1,o2,...,oN
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Path integral with a Schwinger-Keldysh contour

pρ0f (o1, o2, . . . , oN) =∑
i

pi 〈ii |(Po1 ⊗ P∗o1)(Po2 ⊗ P∗o2) . . . (PoN ⊗ P∗oN )|ff 〉 =

∑
i

pi

∑
n1,n′1

. . .
∑

nN−1,n
′
N−1

N∏
k=1

〈nk−1|Pok |nk〉〈n′k−1|Pok |n
′
k〉∗,

〈n0n′0| = 〈ii |, |nNn′N〉 = |ff 〉



Antiferromagnetic spin 1
2

quantum Heisenberg model,

H = J
∑
〈xy〉

~Sx · ~Sy , driven by measurements of the total spin

S ∈ {0, 1} of adjacent spin pairs ~S = ~Sx + ~Sy

P1 =
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Continuous monitoring described by a Lindblad process

∂tρ = i [ρ,H] +
1

ε

∑
k,ok

(
LokρL†ok −

1

2
L†ok Lokρ−

1

2
ρL†ok Lok

)
= γ

∑
k

(
∑
ok

PokρPok − ρ)

Lindblad or Kraus quantum jump operators

Lok =
√
εγPok , (1− εγN)1 +

∑
k,ok

L†ok Lok = 1

G. Lindblad, Commun. Math. Phys. 48 (1976) 119.
K. Kraus, States, Effects and Operations,

Fundamental Notions of Quantum Theory, Academic, Berlin (1983).



Equilibration of the Fourier modes of the magnetization
in a dissipative process that “measures” ~Sx · ~Sy

S̃(p) =
∑
x

S3
x exp(ip1x1 + ip2x2)

D. Banerjee, F.-J. Jiang, M. Kon, UJW,

Phys. Rev. B90 (2014) 241104(R).



Equilibration of the Fourier modes of the magnetization
in dissipative processes that “measure” S1

xS
1
y or S+

x S
+
y + S−x S

−
y

F. Hebenstreit, D. Banerjee, M. Hornung, F.-J. Jiang, F. Schranz, UJW,

Phys. Rev. B92 (2015) 3, 035116.



Equilibration times



Staggered susceptibility 〈M2
s 〉/L4 and Binder ratio 〈M4

s 〉/〈M2
s 〉2
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Diffusion of uniform magnetization through a hole

Diffusion of staggered magnetization through a hole
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Cooling of (3 + 1)-d hard-core bosons

H = J
∑
〈xy〉

(S+
x S−y + S−x S+

y )

driven by non-Hermitean Lindblad operator

L1 = (S+
x + S+

y )(S−x − S−y ) =


0 0 0 0
0 1

2 −1
2 0

0 1
2 −1

2 0
0 0 0 0

 , L†1 6= L1,

L2 =


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

 , L†2 = L2

S. Caspar, F. Hebenstreit, D. Mesterhazy, UJW, arXiv1511.08733



Momentum modes of 2-point correlation function

Cp =
∑
x

(S+
0 S−x + S−0 S+

x ) exp(ipx)



Dissipative gap as a function of system size



Time-evolution of entanglement
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Conclusions

• Real-time simulations of some large open quantum entirely driven by

dissipation or by measurement processes are sign-problem-free and can be

performed using importance sampling quantum Monte Carlo.

• Such simulations have allowed us to study the time-dependence
of different dissipative processes which is slowed down by
conserved quantities.

• Transport processes in dissipation driven strongly correlated large
open quantum spin systems lead to diffusion of magnetization or
staggered magnetization from one reservoir to another.

• Lindblad processes with non-Hermitean quantum jump operators
which describe cooling of bosons into a dark state can also be
simulated. Different momentum modes of the Bose-Einstein
condensate equilibrate at different time scales.
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