10–12 Sept 2014
University of Pisa
Europe/Rome timezone

Fast Cone-beam CT reconstruction using GPU

12 Sept 2014, 14:45
30m
University of Pisa

University of Pisa

<a target="_blank" href=https://www.google.com/maps/place/Dipartimento+di+Fisica/@43.720239,10.407985,17z/data=!3m1!4b1!4m2!3m1!1s0x12d591bb7d8c8ec9:0xbf91ddd442e32978>Polo Fibonacci</a> Largo Bruno Pontecorvo, 3 I-56127 Pisa <em>phone +39 050 2214 327</em>
Talk GPUs for medical imaging purposes GPU in Other Applications (2/2)

Speaker

Giovanni Di Domenico (FE)

Description

The Common Unified Device Architecture (CUDA) is a NVIDIA software development platform that allows us to implement general-purpose applications on graphics processing unit (GPU). There are a lot of application areas that benefit of the GPU computing. Fast 3D cone-beam reconstruction is required by many application fields like medical CT imaging or industrial non-destructive testing. For that reason, researchers work on hardware optimized 3D reconstruction algorithms to reduce the reconstruction time. We have used GPU hardware and CUDA platform to speed-up the Feldkamp Davis Kress (FDK) algorithm, which permits the reconstruction of cone-beam CT data. In this work, we present our implementation of the most time-consuming step of FDK algorithm: filtering and back-projection. We also show the required steps needed to be done for parallelization of the algorithm on the CUDA architecture. Our FDK algorithm implementation in addition allows to do a rapid reconstruction, which means that the reconstructed data is ready just after the end of data acquisition.

Primary author

Giovanni Di Domenico (FE)

Presentation materials