10-12 April 2013
INFN - Laboratori Nazionali del Gran Sasso
Europe/Rome timezone

Evaluation of Ultra-Low Background Materials for U and Th using ICP-MS

10 Apr 2013, 15:00
20m
E. Fermi auditorium (INFN - Laboratori Nazionali del Gran Sasso)

E. Fermi auditorium

INFN - Laboratori Nazionali del Gran Sasso

SS 17 bis, km 18 + 910, 67100 Assergi (AQ), Italy
oral presentation Low background counting techniques Session 3 - Low background counting techniques

Speaker

Eric Hoppe (Pacific Northwest National Laboratories)

Description

An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation and can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of keeping backgrounds of U and Th is achieved.

Primary author

Eric Hoppe (Pacific Northwest National Laboratories)

Co-authors

Presentation Materials

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×