Fermilab’s Tevatron Clock (TCLK) infrastructure has been an integral part of the accelerator control network since the 1980’s. This 10MHz Manchester encoded protocol has enabled flexible, real-time event distribution for thousands of devices connected to the timing network with a high degree of reliability.
Forthcoming upgrades to the Fermilab complex (PIP-II, LBNF, ACORN) necessitate...
The Relativistic Heavy Ion Collider (RHIC) is a high energy collider currently in operation at Brookhaven National Lab that collides both proton beams and heavy ion beams at energies of up to 250 GeV. The use of a low phase noise RF system is important to the operation of the collider, as phase noise will cause beam emittance growth as beam is circulated and collisions occur. In an effort to...
Coherent Electron Cooling Proof-of-Principle (CeC PoP) is an experimental accelerator system currently commissioned at Brookhaven National Laboratory (BNL). The purpose is to demonstrate cooling of a single hadron bunch circulating in the relativistic heavy ion collider (RHIC) with co-propagating electron beam. To support CeC operation, FPGA based LLRF Controllers provide system controls,...
The CLARA Accelerator at Daresbury Laboratory requires timing information to be distributed to locations up to 100m apart with femtosecond accuracy. This information is delivered as laser pulses via 6 stabilized fibre optic links. Each link uses 3 main subsystems which condition and modify the laser pulses: a piezoelectric fibre stretcher provides closed loop length stabilization to compensate...
The Hi-luminosity Large Hadron Synchrotron (HL-LHC) is an upgrade of the LHC which aims to increase the instantaneous luminosity by 5 to 7.5-fold with respect to the LHC nominal value. During LS3 (2026-2028), Super-conducting crab-cavities will be installed around the ATLAS (point1) and CMS (point 5) experiments which are located several kilometres away from the existing main RF system (point...
Abstract
Since June 2024, LCLS-II has been providing users with an X-ray laser that features a higher repetition rate and more intensity compared to LCLS-I. This advancement offers users a broader range of X-ray free electron laser (FEL) options and significantly reduces data collection time. Existing photon instruments and beam diagnostic systems for LCLS-I must be able to detect the X-rays...
The China initiative Accelerator Driven System (CiADS) requires a stable phase reference distribution system (PRDS) to provide low-drift reference signals for over 300 radio-frequency (RF) clients on its superconducting linac and beam transport lines. PRDS is realized using a coaxial cable that transmits 162.5 MHz reference signals, and the phase averaging technique will be employed to...
The timing system is a crucial component in scientific facilities like particle accelerators and laser ignition installations. It ensures that all subsystems within these facilities share a common time reference, enabling coherent operation and accurate tracking of events throughout the machine's operation. Additionally, the timing system generates discrete triggering events and periodic...
The PIP-II timing system is planned to be a two part system consisting of a global timing system (referred to as ACLK) that provides high level, event based timing for the whole Fermilab accelerator complex while the second part is a RF synchronized clock system unique to the PIP-II Linac itself (referred to as LCLK). The ACLK System will make use of an external 10 MHz GPS based signal source...
The redesigned RF reference generation and distribution system at FLASH was installed in 2022. The upgrade is based on a European-XFEL-based Main Oscillator (FL-MO1300), Frequency Conversion (FL-FCM), and RF Distribution (FL-DISM) modules. The main 1.3 GHz RF reference signal is synthesized in FL-MO1300, and the remaining signal frequencies are synthesized in FL-FCM and synchronized to the...
We present recent advancements in the development of the real-time redundancy subsystem for the Master Oscillator of the European XFEL. This system improves upon the usual method of manually switching to a hot-spare in the event of a failure in the main source. Its primary objective is to maintain uninterrupted operation of the facility by minimizing the impact of potential Master Oscillator...
The heavy-ion accelerator of the Institute for Rare Isotope Science (IRIS) has been developed and beam commissioning for the low energy superconducting linear accelerator has been performed. There are three types of SRF cavity, which are 81.25 MHz quarterwave resonator (QWR), 162.5 MHz half-wave resonator (HWR), 325 MHz single-spoke resonator (SSR). There are 22 QWRs and 102 HWRs in the...
The CEBAF accelerator at Jefferson Lab relies on precise frequency references distributed throughout the site. CEBAF’s infrastructure has aged from decades of successful operation, and grounding issues have made the system susceptible to electromagnetic interference. This weakness is particularly noticeable during lightning storms. To address this, the Master Oscillator (MO) system was...