16–22 giu 2024
Milano
Europe/Rome fuso orario

Identifying Neutrino Final States and Energies in MicroBooNE with New Deep-Learning Based LArTPC Reconstruction Frameworks

18 giu 2024, 17:30
2O
Near Aula Magna (U6 building) (University of Milano-Bicocca)

Near Aula Magna (U6 building)

University of Milano-Bicocca

Piazza dell’Ateneo Nuovo 1, Milano, 20126
Poster Accelerator neutrinos Poster session and reception 1

Relatore

Matthew Rosenberg (Tufts University)

Descrizione

MicroBooNE, a Liquid Argon Time Projection Chamber (LArTPC) located in the $\nu_{\mu}$-dominated Booster Neutrino Beam at Fermilab, has been studying $\nu_{e}$ charged-current (CC) interaction rates to shed light on the MiniBooNE low energy excess. The LArTPC technology employed by MicroBooNE provides the capability to image neutrino interactions with mm-scale precision. Computer vision and other machine learning techniques are promising tools for image processing that could boost efficiencies for selecting $\nu_{e}$-CC and other rare signals, reduce cosmic and beam-induced backgrounds, and improve the reconstruction of neutrino energies. The MicroBooNE experiment has been at the forefront of developing and testing such techniques for use in physics analyses. In this poster we overview deep-learning based reconstruction methods. We will showcase the use of a recurrent neural network to estimate neutrino energies and present a new reconstruction framework that uses convolutional neural networks to locate neutrino interaction vertices, tag pixels with track and shower labels, and perform particle identification on reconstructed clusters. We will present studies characterizing the performance of these new tools and demonstrate their effectiveness through their use in an inclusive $\nu_{e}$-CC event selection.

Poster prize No
Given name Matthew
Surname Rosenberg
First affiliation Tufts University
Institutional email Matthew.Rosenberg@tufts.edu
Gender Male
Collaboration (if any) MicroBooNE

Autore principale

Matthew Rosenberg (Tufts University)

Materiali di presentazione